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ABSTRACT Intracranial hemorrhage is a medical condition characterized by bleeding within the skull
or brain tissue. It has mainly five subtypes: epidural, subdural, subarachnoid, intraparenchymal, and intra-
ventricular. To ensure a successful outcome for a patient, timely and accurate identification of intracranial
hemorrhage is crucial. However, a shortage of radiologists, particularly in rural areas, can lead to a delay
in diagnosis. In this work, we proposed an automatic way of identifying intracranial hemorrhage from a
Computed Tomography (CT) scan. To classify intracranial hemorrhage accurately, we have optimized the
Densely Connected Convolutional Network (DenseNet) using Bayesian Optimization (BO). We utilized
Bayesian optimization (BO) to determine the optimal learning rate, optimizer, and the number of nodes in the
dense layer for the DenseNet architecture. Our proposed model can analyze CT scans to detect the presence
of hemorrhage and identify its subtype. The optimized DenseNet model showcased remarkable performance.
By ensuring accurate and reliable diagnoses, our method will assist doctors in making better-informed
decisions and providing better care for their patients.

INDEX TERMS Bayesian optimization, CT scan, deep learning, intracranial hemorrhage, medical image
analysis, radiology, stroke, DenseNet, automatic diagnosis.

I. INTRODUCTION

When bleeding within the skull causes blood to gather around
or within the brain, it leads to intracranial hemorrhage, a con-
dition that poses a serious threat to life. Several factors can
contribute to this condition, including trauma, high blood
pressure, or rupture of an aneurysm. Aside from severe
headaches, nausea, vomiting, seizures, and loss of conscious-
ness, intracranial hemorrhage symptoms can vary based on
the site and severity of the bleeding. If not diagnosed and
treated promptly, intracranial hemorrhage can cause perma-
nent brain damage or death. Therefore, accurate and timely
diagnosis of intracranial hemorrhage is essential to ensure the
patient’s survival and effective treatment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno M. Garcia

Diagnosing intracranial hemorrhage involves the careful
analysis of medical history, physical examination findings,
and the utilization of advanced imaging modalities like CT
scans. Although the manual interpretation of CT scans by
radiologists can provide invaluable insights, this process can
often prove time-consuming, leading to delays in diagnosis
and treatment. Particularly in rural areas, the scarcity of radi-
ologists may further exacerbate these delays, putting patients
at risk of severe brain damage or even death. It can also
be challenging for radiologists to detect small bleeds in the
brain, and some minor hemorrhages may go undetected. As a
result, relying solely on manual interpretation for diagno-
sis can lead to errors and reduce the availability of timely
diagnosis.

The adoption of computer-aided diagnosis (CAD) offers
a promising alternative to manual diagnosis of intracranial
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hemorrhage, especially in scenarios where there is a shortage
of radiologists or a need for rapid and precise diagnoses.
CAD systems utilize machine learning algorithms to ana-
lyze medical images and provide an automatic diagnosis of
diseases. Particularly in emergency situations, where prompt
treatment is crucial, CAD can significantly reduce diagnosis
time and enhance accuracy.

This paper presents a CAD system that uses Deep Learning
(DL) and Bayesian Optimization (BO) to detect intracranial
hemorrhage. Several works have been done on the detection
of intracranial hemorrhages from head CT scan [1], [2], [3].
Unlike other works, we have done ours from an optimization-
focused perspective. Our system utilizes a Convolutional
Neural Network (CNN) to analyze CT scans and accurately
identify intracranial hemorrhage. The CNN undergoes train-
ing on a comprehensive dataset of CT scans, with its hyperpa-
rameters optimized through the BO algorithm. This method
has proven to be highly effective in diagnosing intracranial
hemorrhage. Medical professionals can use this system to
diagnose and treat intracranial hemorrhages, especially in
emergency situations where timely diagnosis and treatment
are crucial. The graphical abstract of our work is illustrated
in FIGURE 1.

We utilized the DenseNet [4] architecture proposed by
Huang et al. as our convolutional neural network model.
Compared to other CNN architectures, DenseNet offers sig-
nificant advantages. This network’s dense connectivity pat-
tern makes it possible to propagate information and gradients
efficiently throughout the network, thereby preventing van-
ishing gradients and improving performance. Furthermore,
DenseNet’s dense blocks facilitate efficient information prop-
agation and fusion across layers, which facilitates the learn-
ing of complex and hierarchical data representations. These
advantages made our task simpler, which allowed us to create
a reliable and accurate model.

We used the Bayesian Optimization (BO) technique [5]
to fine-tune the DenseNet architecture’s hyperparameters.
As the DenseNet architecture was complex and large, we pre-
ferred BO over other exhaustive search techniques. There are
many hyperparameter combinations, but evaluating them all
can be impractical and computationally expensive. BO uses
a surrogate function and an acquisition function to focus
on the most promising regions of the search space. This
saves time and resources. The surrogate function is con-
structed on the basis of previous evaluations, enabling it
to predict the performance of neural networks under dif-
ferent hyperparameter configurations. In order to determine
which hyperparameter combinations to try next, the acqui-
sition function is used. It maintains the trade-off between
exploration and exploitation. These two functions enable
BO to perform hyperparameter optimization efficiently and
quickly.

The contributions of this paper are as follows:

1) In the proposed CAD system, deep learning and
Bayesian optimization techniques are used to opti-
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mize the convolutional neural network, improving the
effectiveness of hemorrhage diagnosis.

2) This method saves significant time and resources by
optimizing the network on a small dataset before
training it on a large dataset.

3) Inan emergency situation where time is of the essence,
the proposed system offers a potentially life-saving
alternative to manual interpretation of CT scans.

4) Inrural areas with a lack of skilled radiologists, the pro-
posed system offers a valuable diagnostic and treatment
tool for intracranial hemorrhage.

The subsequent sections of the paper are presented
in the following order: Section II provides a review
of the relevant literature. The methodology employed is
described in Section III. The experimental outcomes are out-
lined in Section IV, followed by the conclusion of the paper
in Section V.

Il. LITERATURE REVIEW

Intracranial hemorrhages are commonly detected using med-
ical imaging techniques, such as CT scans and MRIs.
Chang et al. [6] developed an ROI-based CNN architec-
ture for accurate identification of intracranial hemorrhage
from non-contrast computed tomography (NCCT) scans.
Their proposed method was able to detect and quantify
intraparenchymal, subarachnoid, epidural, and subdural hem-
orrhages. Chilamkurthy et al. [7] developed a deep learning
model that can detect critical abnormalities in the head that
include hemorrhage, fractures, midline shift, and mass effect
from CT scans. Their proposed method was also able to detect
subtypes of hemorrhages. Lee et al. [8] developed an explain-
able deep convolutional neural network for the identification
of brain hemorrhage from CT scans using attention maps and
prediction basis.

Grewal et al. [9] took a cascaded CNN-RNN approach to
detect brain hemorrhages. They developed a model named
(RADnet) that uses CNN for extracting features from indi-
vidual slices and LSTM for capturing the dependencies
between the slices. They used a 40-layer DenseNet archi-
tecture for the classification task. Using RADnet, they were
able to achieve performance comparable to senior radiol-
ogists. A notable limitation of this study is the utilization
of a small dataset for training the RADnet model. Hence,
the data might not be able to capture all sorts of difficult
cases. Nguyen et al. [10] also performed a similar method
to detect intracranial hemorrhage. They used ResNet-50 and
SE-ResNeXt-50 to extract features and LSTM to capture the
dependencies between slices. A 3D convolutional neural net-
work was implemented by Jnawali et al. [11] to detect brain
hemorrhage from CT scans.

For the classification and segmentation of intracranial
hemorrhage, Kuo et al. [12] developed a Patch-based Fully
Connected Neural Network (PatchFCN). Their segmentation
model can perform semantic segmentation, which is better for
this task compared to the traditional mask R-CNN approach.
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FIGURE 1. Automated diagnosis of intracranial hemorrhage using deep learning.

The model was able to localize some abnormalities which
were even missed by some expert radiologists.

Deep learning has emerged as one of the most powerful
tools for the analysis of medical images in the last few years.
This technique has been successfully applied to various med-
ical applications, including pulmonary nodule detection, liver
segmentation, retroperitoneal sarcoma segmentation, lung
cancer risk prediction, and pancreatic ductal adenocarcinoma
detection from CT scan. Li et al. [13] employed deep learn-
ing for pulmonary nodule detection, while Araujo et al. [14]
used it for liver segmentation. Salvaggio etal. [15] uti-
lized this technique for retroperitoneal sarcoma segmen-
tation. Furthermore, Mikhael et al. [16] proposed a deep
learning-based approach for lung cancer risk prediction,
while Alves et al. [17] developed a deep learning system for
pancreatic ductal adenocarcinoma detection.

Deep learning techniques were also used successfully
to detect COVID-19 in CT scans. Islam et al. [18] devel-
oped a novel CNN model to extract 100 prominent features
from CT scan images and then used an ensemble model
for COVID-19 classification. Kogilavani et al. [19] com-
pared various CNN architectures for COVID-19 detection.
Ravi et al. [20] employed a large-scale learning approach
using a stacked ensemble meta-classifier and feature fusion
that outperformed existing models. These studies’ outcomes
reveal the capabilities of deep learning for medical image
analysis.

It is important to note that many of the studies discussed
in this section do not take optimization into account. How-
ever, optimizing a neural network can lead to significant
performance improvements. Therefore, it’s essential to con-
sider optimization techniques in the development of neural
networks. In this research, we used a smaller dataset to opti-
mize the DenseNet, followed by a larger dataset to retrain
the most promising configuration of the DenseNet for an

83448

extended period of time. We have used the BO to optimize
the DenseNet in this work.

lIl. METHODOLOGY

The methodology of our work is presented in FIGURE 2.
There are mainly 4 steps: (a) Dataset Description,
(b) Image Pre-Processing, (c) Model Development & Opti-
mization (d) Model Evaluation. Each of the steps is discussed
in the following sections.

A. DATASET DESCRIPTION
In this study, we used the RSNA Intracranial Hemorrhage
Detection dataset [21]. The dataset contains CT images of
five subtypes of intracranial hemorrhages - (a) intraparenchy-
mal, (b) intraventricular, (c) subarachnoid, (d) subdural, and
(e) epidural. The aim is to detect the presence of hemorrhage
and identify its subtype. A total of 1,074,271 unique images
are included in this dataset to detect brain hemorrhage.
Images were collected from clinical images and the archives
of Thomas Jefferson University, Stanford University, and the
Universidade Federal de Sao Paulo. Creating such a large
dataset aims to improve detection accuracy and reduce errors.
Using commercial online annotation platforms, 60 neuro-
radiologists from the American Society of Neuroradiology
have annotated five types of hemorrhage - subarachnoid,
intraventricular, subdural, epidural, and intraparenchymal.
Different subtypes of intracranial hemorrhages are shown
in FIGURE 3. The RSNA dataset contains images of both
labelled and unlabelled CT scans. We utilized the labelled set
in our experiments. The labelled dataset was randomly split
into train, validation, and test sets with a ratio of 80:10:10.
Intraparenchymal hemorrhage refers to the phenomenon
where a blood vessel ruptures inside the brain, leading to
bleeding within the brain tissue itself. It can be caused by a
variety of reasons that include hypertension, aneurysms, arte-
riovenous malformations, or head trauma. Intraventricular
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FIGURE 2. Methodology of our work.
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FIGURE 3. Different subtypes of intracranial hemorrhages [21].

hemorrhage occurs when blood vessels within the ventric-
ular system of the brain rupture, causing bleeding into the
fluid-filled spaces of the brain. Premature infants are most
at risk for this type of hemorrhage, but it can also occur
in adults after a head injury. Subdural hemorrhage occurs
when blood vessels between the brain and the dura mater
rupture, causing bleeding in the space between the brain and
the skull. In addition to head trauma, subdural hemorrhages
can also be caused by both blood clotting disorders and
brain tumors. Subarachnoid hemorrhage occurs when blood
vessels between the arachnoid and pia mater rupture, causing
bleeding in the space between the brain and the meninges.
The most common cause of subarachnoid hemorrhages is
ruptured aneurysms, but other medical conditions can also
cause them. Epidural hemorrhage occurs when blood vessels
between the dura mater and the skull rupture, causing bleed-
ing in the space between the skull and the meninges. Head
trauma is the most common cause of epidural hemorrhages.

The class distribution of the five types of hemorrhages is
shown in FIGURE 4. The figure illustrates that the dataset
is highly imbalanced. The number of samples of epidural
hemorrhage is very low compared to other classes. Sub-
dural hemorrhage has the highest number of samples. The
number of samples of intraparenchymal and subarachnoid
hemorrhage is also very high.

B. IMAGE PRE-PROCESSING

For each slice of the CT scan, we performed several pre-
processing operations that included windowing, resizing,
normalizing, and zero centering.
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FIGURE 4. Class distribution of images in the training set.

Hounsfield units (HU) are used in CT scans to measure
the densities of objects. The amount of X-rays absorbed by
an object determines its density. The range of HU values
typically ranges from —1000 to 41000. Lower values indi-
cate lower density i.e., less X-rays are absorbed, whereas
higher values indicate higher density i.e., more X-rays are
absorbed. Different tissues and structures in the body have
different densities, which can be measured using HU. For
example, bones have high density, and depending on the type
of bone, the HU value varies from +400 to +1000. The
denser the bone tissue, the brighter it will appear on the CT
image. Air has a low density and has HU value in the range
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of —1000 to —700. CT images show darker areas where HU
values are low. Hounsfield units are useful for identifying and
characterizing different structures in the body on CT scans
and highlighting abnormalities or subtle differences in tissue
density. Different tissues and structures in the body have
different densities, which can be measured using HU. The
HU number distinguishes between air, water, lung, kidney,
blood, and muscles. To display specific ranges of HU values,
windowing can be used.

Windowing is a technique used in medical imaging in
which the brightness and contrast of an image is adjusted to
enhance specific features of interest. This is done by mapping
a range of pixel values into a new range. The pixel values
mapped to a new range can then be visualized on a screen
to visualize the specific structure of interest. A window level
sets the midpoint of the display range, while a window width
sets the range of values. By utilizing these two parameters,
doctors can highlight or omit certain structural features in
CT scans, assisting them in identifying abnormalities and
making diagnoses.

Several windowing techniques are commonly used in brain
CT scans, including the bone window, gray-white differen-
tiation window, brain matter window, and subdural (blood)
window. Regions whose density is closer to that of bone can
be found using the bone window. Skull lesions can be located
using this windowing. The brain window can be used to focus
on the regions whose average density is similar to that of
the brain’s soft tissue. These regions in the brain comprise
air and fluid-containing areas. To differentiate between gray
and white matter of the brain, the gray-white differentiation
window is used. The presence of a tumor or brain swelling
can be identified through this method. A subdural window is
a specific type of windowing technique that can be used to
detect subdural hemorrhages.

If the intensity of the pixel (7,j) in the ky, channel of
the CT scan is Cilj‘. and the maximum and minimum range
of the specific window are ¢ . and g“,f”-n respectively, the
updated value of the pixel after windowing operation for the
ki, channel is described by the following:

e [T c,’;inkg ¢ Ské“éi 0
ij ij 0 if {ij < i or ;l,j > d;]ax

To get more information about different density region,
we applied 3 windowing (brain, soft tissue, and subdural)
operation to the original image and merged them into a
3 channel RGB image:

xy=cl el F ] @)

We aim to use different windows as different channels in
the input image. FIGURE 5 depicts CT scans with different
windowing. It is observed from FIGURE 5 that different
regions of the scan are visible at different windows, which
is very useful. Bone windowing can be used to identify bone
fractures, whereas brain windowing can be used to iden-
tify brain hemorrhages. We generated three single-channel
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images in the windowing process according to the HU of the
brain, soft tissue, and subdural range. Then we stacked these
three images into an RGB image. Thus, we could capture the
necessary features of our desired range (brain, soft tissue, and
subdural). The bone window of the CT scan is not relevant to
us, so we have not included it.

After that, we resized or downsampled the RGB CT
images. Downsampling is required since we have limited
Video Random Access Memory (VRAM) in the Graphics
Processing Unit (GPU). This VRAM stores all the images
during training. If the images are large, VRAM cannot
accommodate all the images in a batch, and the training
stops. The RGB images were resized to (224, 224, 3) from
(512,512, 3).

After downsampling the images, normalization and
zero-centering were performed. Normalization involves
rescaling the intensity values of an image to a specific range.
Several types of normalization are found in the literature that
include min-max normalization, z-score normalization etc.
In min-max normalization, the values are scaled to range
between 0 and 1. Min-max normalization can be calculated
as follows:

Xowm_norm = M (3)
B Xmax - Xmin
here, X, X,,in, and X4y represent the original, minimum, and
maximum values in the dataset, respectively. The normalized
value of X within the range [0, 1] is denoted as X,,m_norm-

In z-score normalization, the values are scaled in such a
way that they achieve a mean of 0 and standard deviation of 1.
It can be calculated as follows:

X —
o

“

here, x represents the original data, while u and o represent
the mean and standard deviation of the data, respectively. The
normalized data having mean of O and standard deviation of
1 is denoted as x;_norm-

Zero centering is a preprocessing technique that involves
adjusting the mean of the data to zero. In order to achieve
this, the mean value of the data is deducted from each data
point.

Xz_norm =

Xzero =X — X 5

here, x represents the original data, x represents the mean
value of x, and x,.,, represents the new data with the mean
centred around zero.

C. MODEL DEVELOPMENT

1) CONVOLUTIONAL NEURAL NETWORK (CNN)

CNN is a specialized neural network architecture specifically
tailored to handle data that exhibits a grid-like pattern, such
as images [22]. CNNs apply a type of operation called con-
volution to extract significant features from an image, which
helps in detecting edges and other relevant information. This
operation performs well in extracting important information
from images.

VOLUME 11, 2023
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FIGURE 5. CT scan at different windowing.

The convolution operation involves taking a small matrix
of numbers, known as a filter or kernel, and sliding it across
the image, one pixel at a time, to create a modified output
image. For each position, the values in the filter are multiplied
by the corresponding pixels in the image, and the resulting
products are summed to generate an output. An output image
is created by repeating this process for every pixel of the
image.

The convolution operation on an image is as follows:

X' @)= Xi+mj+mKmn) (6
m n

here, the input image is represented by the matrix X and the

filter is represented by the matrix K. The resulting output is

represented by matrix the X’. The * symbol represents the

convolution operation. i and j are the pixel indices in the

output image, and m and n are the kernel indices.

A visualization of the convolution operation is shown in
FIGURE 6. Here, the input is a 5 x 5 grid, and the filter has
a dimension of 3 x 3. The filter goes through the input and
generates the output by performing the convolution operation.
The output dimension is determined by both the input and the
filter dimensions.

251|710 T1]o]1
68|27 |12 o/1]0 322228
135832 HIEE 18|31 |21
22361 " 412331
12|5[6|7]9

Input Filter Output

FIGURE 6. Visualization of convolution operation on an Image.

Convolutional layers are often succeeded by a pooling
layer to decrease the spatial size and summarize the features
of the outputs. The pooling layer serves a dual purpose: it not
only decreases the dimensionality of the feature maps but also
enhances the receptive field of the subsequent convolutional
layers. Several kinds of pooling operations are found in the
literature. The most common types of pooling are maxpooling
and average pooling. Max pooling assigns the output as the
maximum value within each pooling region, while average
pooling assigns the output as the average value within each
pooling region.
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FIGURE 7. MaxPooling operation.

A visualization of the maxpooling operation is shown in
FIGURE 7. It is observed that the maxpooling operation has
effectively reduced the spatial dimensions of the feature map
from 4 x 4 to 2 x 2 by taking the maximum value within
each 2 x 2 region.

13

42

90

13 | 42 | 90

Flatten 8
33

65

23

81

FIGURE 8. Flattening operation.

The convolution and pooling layer make up the feature
extraction part of the CNN. Classification is done using
a Fully Connected Network (FCN) that uses the features
extracted by these layers as input. Prior to entering the FCN,
the features are first flattened. A visualization of the flattening
operation is shown in FIGURE 8.

Modern CNNs stack multiple convolution layers on top of
each other to extract deep features. Subsequently, the final
layer is flattened and fed into a FCN. A simple CNN for the
identification of five subtypes of intracranial hemorrhage is
shown in FIGURE 9. The network takes an image as input.
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Feature Maps

FIGURE 9. How convolutional neural network works.

Then it goes into three successive stacks of convolutional
and pooling layers, resulting in downsampled feature maps
at each stage. The feature maps obtained after the final con-
volutional layer are subsequently flattened and processed by a
fully connected network consisting of three layers. These lay-
ers perform the task of classification. In the final layer, there
are five nodes. Each node represents a subtype of intracranial
hemorrhage.

2) DENSELY CONNECTED CONVOLUTIONAL NETWORK
(DenseNet)
DenseNet [4], was introduced to address a common issue of
CNN. There have been networks with various numbers of lay-
ers since the inception of AlexNet, some reaching 100 layers
or more. Adding so many layers to a neural network created a
new problem known as the vanishing gradient problem. Since
there are many intermediate layers between the input and out-
put layers, information from the input layer disappears before
reaching the output layer. DenseNet addresses this problem
by connecting multiple layers using skip connections instead
of propagating them linearly. The network also reduces its
complexity by ensuring feature reuse, and hence reduces the
time taken to train.

For any traditional CNN, the output of iy layer, x; is
obtained by applying nonlinear transformation H; to the out-
put of the previous layer x;_1:

xi = Hi(xi—1) @)

ResNet [23] uses the concept of skip connection. In the case
of ResNet, the output of the iy, layer, x; is obtained by adding
the output of a previous layer x; to the result of the nonlinear
transformation applied to the output of the previous layer
Xi—1-

X = Hi(xi—1) + x; (®)

DenseNet [4] introduces direct connections between each
layer to each subsequent layer to improve the flow of infor-
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mation. The output of the i;, layer is:
xi = Hi([xo, x1 ..., xi—1]) ©)

The architecture of the DenseNet model is shown in
FIGURE 10. Unlike typical CNNs, where convolution and
pooling layers are stacked one after another to form the
entire network, DenseNet has four blocks with multiple layers
in each block. In each block, there are several layers, and
the features’ dimension remains the same throughout all the
layers. All the layers are stacked as a pair of 1 x 1 convo-
lution layer followed by a 3 x 3 convolution layer. Dense
blocks 1, 2, 3 and 4 contain 6, 12, 24 and 16 such pairs
respectively. The 1 x 1 convolution layer acts as a bottleneck
layer, which results in faster computation and performance
gain.

The transition layer connects each dense block to the
next block through a composite function of convolution and
pooling. There are three transition layers connecting the four
dense blocks. The transition layers consist of a 1 x 1 con-
volution filter and a 2 x 2 average pooling with a stride
of 2. As a result of the transition layer, the number of
channels is reduced, resulting in downsampling. Following
the fourth dense block, a global average pooling opera-
tion is performed before transitioning to a fully connected
layer.

The pre-activation value of a neuron in a neural network
can be calculated as:

n
ZiZZijj+bi (10)
j=1

here, x; represents the input to the neuron i from the j-th input
neuron, w; represents the weight associated with the input x;,
b; represents the bias term for neuron i.

In DenseNet, ReLU activation is applied to the output
neurons from each layer except the final layer. The ReLU
activation function takes an input value Z; and returns the
maximum between that value and 0. That means, if Z; is
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FIGURE 10. Architecture of the DenseNet121 Model.

positive it returns Z;, if its negative it returns 0. It can be
calculated as follows:

Zi ifZl' >0

0 otherwise

ReLU(Z;) = [ (11)

In this work, we used sigmoid activation function in the
final layer since it is a multi-label classification problem and
more than one class can be activated for the same image
input. For example, a person who has subdural hemmorhage
might also be a victim of epidural hemorrhage. Given an input
value Z;, the sigmoid activation function o (Z;) transforms the
value to a range between O and 1. It can be calculated as
follows:

1
1+ e %
We used the Binary Cross Entropy (BCE) loss function.
If the predicted output is Y and original output is Y, the BCE
loss will be,

o(Z) = (12)

. 1< . .
Lpce(Y, V) = —= D (Vi -log Vi + (1 = ;) - log (1 — ¥;)
n i=1

(13)

The loss is propagated backward to update the weights of all
the layers to reduce the future loss. The model parameters are
updated as,

, 0LpcE
W =w —oa———
8W,'

(14)
here, w; is the current value of the weight, w} is the updated
value of the weight w; after applying the weight update
rule, « is the learning rate which controls the magnitude of
the weight update, and LBCE is the partial derivative of the
binary cross-entropy loss functlon Lpcg with respect to the
weight w;. In order to perform classification, a classification
threshold of 0.5 is used. If the output of a neuron in the
final layer of the network is above 0.5, it is identified as
positive.

The output layer of our neural network has 5 neurons,
each corresponding to a specific type of hemorrhage. Since
sigmoid activation function is used in the neurons of the
final layer, the output values will range between 0 and 1.
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A higher output value of a neuron indicates more likelihood
of presence of the corresponding hemorrhage in the image.
A classification threshold of 0.5 is used to make a final
classification decision. If the output value of a neuron is
above 0.5, it is identified as positive for the corresponding
hemorrhage. Otherwise, it is identified as negative.

1
yz‘=[0

D. MODEL EVALUATION
The evaluation metric is a score that measures how well a
machine learning model performs [24]. It plays a crucial role
in determining the effectiveness of models and is used to
compare different models and choose the best one. There is
a wide range of evaluation metrics depending on the nature
of the problem. The accuracy, precision, recall, and F1 score
are a few of the most common metrics used for classifi-
cation tasks [25]. In regression tasks, errors are typically
evaluated as mean squared error, mean absolute error, and
root mean squared error [25]. Different evaluation metrics
focus on different aspects of model performance, so choosing
the right metric for a problem is essential. In a balanced
dataset, accuracy may be the best metric, but precision and
recall provide more helpful information in an imbalanced
dataset. In this study, multiple evaluation metrics, including
accuracy, precision, recall, Fl-score, and specificity, were
used to evaluate the model to avoid bias due to any single
evaluation metric’s influence.

Accuracy: Accuracy represents the percentage of correctly
classified instances (both positive and negative) out of the
total instances.

if Yiz.S] (15)

if vi<.5

TP + TN
TP+ TN + FP + FN
Precision: Precision represents the percentage of correctly

predicted positive instances out of all predicted positive
instances.

Accuracy =

TP

Precision = ——
TP + FP

Recall or True Positive Rate: Recall represents the percent-
age of correctly predicted positive instances out of all true
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positive instances.

TP
TP + FN
Specificity or True Negative Rate: Specificity represents

the percentage of correctly predicted negative instances out
of all true negative instances.

Recall =

TN
IN + FP
F1 Score: F1-Score takes into account both the ability to

correctly identify positive instances (precision) as well as the
ability to capture all the actual positive instances (recall).

Specificity =

2 x Precision x Recall
F1 Score =

Precision + Recall

E. BAYESIAN OPTIMIZATION BASED FRAMEWORK FOR
INTRACRANIAL HEMORRHAGE CLASSIFICATION

1) BAYESIAN OPTIMIZATION

Various optimization strategies can be used to optimize
hyperparameters for deep learning [26]. The most common
and easiest way is to use grid search or random search. In grid
search, all possible combinations of hyperparameters are
explored whereas, in random search, random configurations
of hyperparameters are explored. Both of these methods work
well when the search space is small. When the search space
becomes large, these approaches become inefficient since a
huge number of sample points have to be evaluated to get a
good solution, which is very expensive.

A probabilistic model is employed in Bayesian Optimiza-
tion (BO) [27] to guide the search within the search space.
This model helps to identify promising areas of the search
space, allowing the search to focus on the most promising
configurations. By concentrating on the most promising con-
figurations, BO offers the advantage of reducing the number
of evaluations required to discover the best configuration,
unlike the grid or random search methods.

Additionally, BO uses previous evaluations to guide the
search. By incorporating information from previous evalua-
tions, the search can explore the search space more effectively
and find the best configuration more quickly. This is because
previous evaluations provide information about which con-
figurations are most likely to lead to good results, allowing
the search to focus on those configurations. By using both
a probabilistic model and information from previous eval-
uations, BO is a powerful technique for finding the best
configuration of a model.

BO uses the concept of Bayes’ theorem to perform the opti-
mization [27], [28]. According to the Bayes’ theorem [29]:

P(A | B) = PB1APA) (16)
P(B)

P(A) represents the prior probability of event A before con-
sidering any evidence. The probability of observing evidence
B is P(B). P(B|A), commonly referred to as the likelihood
of event B, signifies the probability of evidence B occurring
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under the assumption that event A is true. P(A|B), also known
as the posterior probability of A, represents the probability of
A being true if the evidence B is observed.

BO makes use of a prior belief to produce a posterior
that closely relates to the objective function f. In order to
get a good approximation of the real function, it takes sam-
ples from the hyperparameter space and then constructs a
surrogate function. One such surrogate function is Gaussian
Process (GP) [27]. Evaluation of GP posteriors is inexpensive
and is useful for discovering areas in a search space where
sampling is likely to improve results.

The distribution over functions that map input points to
output values is modeled in GP regression. Given a set of
input points X = Xx1,x2,...,X, and their corresponding
function values y = y1,y2,...,Ys, We can use this data to
make predictions about the output value at a new input point
xx. The GP posterior at x, is a Gaussian distribution with
mean i, and variance o2. In order to calculate the mean,
function values at the training points are linearly combined.
Covariances between the training and test points determine
the weights used in the combination. The variance measures
the uncertainty about the predicted function value at x,. It is
affected by the uncertainties in the estimates of the values of
the function at the training points.

s = m(xy) + kIK™ 1y — m(X)), (17)
o} = k(x., x,) — kK 'k,, (18)

where k (x,,x,) is the self covariance of the point x,., the vector
k. contains the covariances between the test point x, and the
training points y, matrix K denotes the covariances among the
training points. and m(X) is the vector of mean values at the
training points.

The acquisition function determines the next point to
be sampled in the search space utilizing the GP surrogate
function. It effectively balances exploration and exploita-
tion during the optimization process. During exploration, the
acquisition function prioritizes sampling points in the search
space where the surrogate function exhibits higher variance.
In contract, during exploitation, it samples from promising
regions of the search space. Several acquisition functions
are found in the literature that includes Upper Confidence
Bound (UCB), Probability of Improvement (PI), Expected
Improvement (EI) etc [27].

EI [27] is commonly used in BO to select the next point to
sample. The equation for EI is:

wx) = §)PZ) +o(x)Pp(Z) ox) >0
ox)=0
(19)

_ min —
El(x)= | 0

here, y,in stands for the minimum function value observed
thus far. u(x) and o (x) correspond to the mean and standard
deviation of the GP posterior at point x. ® and ¢ are the stan-
dard normal cumulative distribution function and probability
density function. The exploration parameter ¢ is a constant,
which purpose is to encourage the optimizer to sample points
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FIGURE 12. Convergence plot.

with higher variance rather than just high mean. A higher
value of ¢ means that the acquisition function will explore
the search space more. Z is a standardized normal random
variable.

Ymin — H(X)
o(x)

0 ox)=0

ox)>0

Z= (20)

The EI measures the expected improvement over the cur-
rent minimum value, taking into account the uncertainty in
the GP model. Intuitively, it selects points with a high prob-
ability of improving over the current best point, while also
considering the uncertainty in the model.
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Validation loss is considered the objective function in our
framework. The number of neurons, learning rate, and the
optimizers are the hyperparameters that we tuned.

2) THE FRAMEWORK
We have showed our Bayesian Optimization based
framework for hemorrhage classification in FIGURE 11.
The first step involves splitting the labeled hemorrhage
dataset into three separate sets: training, validation, and test
sets adopting an 80:10:10 split ratio. For the optimization and
training step, the training and validation sets are employed,
whereas the evaluation of the best model is conducted exclu-
sively on the test set. We have optimized the DenseNet archi-
tecture in our work. Three hyperparameters were optimized
using BO - learning rate, number of dense nodes, and opti-
mizer. During the first iteration of optimization, a predefined
hyperparameter configuration is used. Then the DenseNet
architecture is trained on this predefined hyperparameter.
After training the DenseNet with this hyperparameters, a val-
idation loss is obtained. This validation loss is used to update
the GP model which acts as the surrogate function. Then
a new set of hyperparameter values is proposed by the EI
acquisition function. The DenseNet architecture is trained
again with these new set of hyperparameter values. The
optimization and training process iterates until the maxi-
mum number of iterations is reached. Once this process is
completed, the best model is determined by evaluating the
validation loss. This model is trained on the full dataset for an
extended period. Subsequently, the performance of this model
is assessed using the test set.
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TABLE 1. Results of each iteration of Bayesian optimization applied to
the DenseNet architecture.

Iteration Objective Learning No. of Optimizer
No. Rate dense nodes
1 0.484 0.001 2 Adam
2 0.434 7.875 x 102 75 RMSprop
3 0.548 0.003 88 Adam
4 0.477 0.001 41 RMSprop
5 0.797 2.825 x 1072 103 SGD
6 0.387 0.0001 134 Adam
7 0.458 1.235 x 10~° 132 RMSprop
8 0.472 0.0004 21 RMSprop
9 0.441 0.0021 88 Adam
10 0.542 0.0030 18 RMSprop
11 1.088 1.572 x 1075 10 SGD
12 0.639 107° 150 Adam
13 0.341 0.0006 127 SGD
14 0.377 0.0034 94 RMSprop
15 0.077 7.809 x 10~° 10 RMSprop
16 0.149 0.0002 122 RMSprop
17 0.093 0.00015 126 RMSprop
18 0.312 0.0008 56 SGD
19 0.067 2.637 x 10~° 131 RMSprop
20 0.362 0.0025 79 RMSprop
21 0.343 0.0014 88 RMSprop
22 0.345 0.0018 18 RMSprop
23 0.107 0.01 105 SGD
24 0.113 0.0099 10 SGD
25 0.133 0.01 4 SGD

IV. EXPERIMENTAL RESULTS

The DenseNet architecture was used to perform the classi-
fication. The optimization of DenseNet’s hyperparameters
was accomplished using BO. Initially, the CT scans were
converted to Hounsfield Unit (HU) to distinguish between
different organs. These are also resized and normalized for
training the deep neural networks.

A. HYPERPARAMETER OPTIMIZATION OF DENSELY
CONNECTED CONVOLUTIONAL NETWORK (DenseNet)

We utilized BO to identify the optimal hyperparameters for
the DenseNet in order to accurately detect intracranial hemor-
rhage from CT scans. The hyperparameters subjected to opti-
mization included the learning rate, number of dense nodes,
and optimizer. To begin, we defined the search space for
hyperparameter optimization. The learning rate search space
ranged from 1075 to 10~2, while the number of dense nodes
varied from 2 to 150. Throughout the optimization process,
we explored three different optimizers: Adam, Stochastic
Gradient Descent (SGD), and Root Mean Squared Propaga-
tion (RMSProp).

The convergence plot in Figure 12 illustrates the opti-
mization progress of the DenseNet. On the x-axis, the graph
displays the number of iterations or trials, while the min-
imum value of the validation loss is shown on the y-axis.
From FIGURE 12, it is observed that the validation loss
first decreased in the 2nd iteration of the optimization. From
2nd to 5th iteration, no improvement in validation loss was
observed. Later the validation loss decreased in the 6th, 13th,
15th, and 19th iterations. Although there was a significant
improvement in validation loss from the 14th to 15th iteration,
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the improvement in validation loss from the 18th to 19th
iteration is relatively minimal. The model was able to achieve
a validation loss of less than 0.1.

TABLE 1 presents a summary of our findings on each
iteration of Bayesian optimization applied to the DenseNet
architecture. From this table, we can see how our objec-
tive function has changed with each iteration and what the
hyperparameters were. Each table row shows the exact hyper-
parameters used in a trial and the resultant validation loss.
It is apparent from the table that, the model with the lowest
validation loss was obtained during the 19th iteration of opti-
mization. The validation loss at that iteration was 0.067 and
the hyperparameters were 2.637 x 1075, RMSprop, and
131 which were the learning rate, optimizer, and the number
of dense nodes respectively.

FIGURE 13 shows three Partial Depedence Plots (PDPs)
with the three optimized hyperparameters - learning rate,
optimizers, and the number of dense nodes. The PDPs are
useful for understanding how the change of hyperparame-
ters influences the objective function or, in this scenario,
the validation loss. The yellow areas on the plots represent
regions with low validation losses, and the blue areas on
the plots represent the regions where the validation losses
are high. As we experience low validation losses in the yel-
low regions, they are particularly interesting to us. A point
in the plot represents a particular set of hyperparameters.
These are represented as black dots. In the figure, the red
star indicates the location of the optimal hyperparameter
value.

We can see from the PDP that when the learning rate
changed, the number of dense nodes did not significantly
alter the validation loss 1073 to 10™* seem to be the opti-
mum range for learning rate. SGD performed best when
the learning rate was close to the 10~2 region, according to
the PDP with optimizers and learning rate. With RMSprop
and a learning rate under 1073, the best validation loss was
achieved.

B. TRAIN & TEST RESULTS OF THE OPTIMIZED MODEL
During optimization, we used a smaller subset of the orig-
inal dataset to find the most suitable model for diagnosing
intracranial hemorrhage. Bayesian optimization was used to
determine the best model on the smaller dataset, which was
then trained on the original larger dataset. From TABLE 1,
we see that the best model or the best set of hyperpa-
rameters was found during iteration 19 of the optimization
process. The best model at this stage has a learning rate of
2.637 x 1072, and the number of dense nodes was 131. The
RMSprop optimizer was used to train this model. We again
trained the model found at this iteration on the original larger
dataset to check its performance.

FIGURE 14 depicts the relationship between the number
of epochs and the metrices used to infer the model. The
model is trained for 50 epochs. Change in loss, accuracy and
F1-score are shown in the figures. The blue curves represent
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FIGURE 13. Partial dependence plots.

the training metrices (training loss, accuracy, and F1-score),
whereas the red curves represent the validation metrices (val-
idation loss, accuracy, and Fl-score). From FIGURE 14a,
it is observed that the training loss began to decrease from
the very first epoch. The training loss increased slightly from
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epoch 19 to 20 and epoch 25 to 26. It decreased during the
remainder of the epochs. The dynamics of validation loss
were inconsistent. It often went up and down. Quite similar
phenomena were observed for accuracy and F1-score curves
in FIGURE 14b and FIGURE 14c. The training accuracy and
F1-score began to rise from the first iteration. The validation
accuracy and F1-score did not follow any straight pattern.

Upon completing the training, the model’s classification
performance on the test set was evaluated and is presented in
TABLE 2. The table shows the model’s overall performance
and performance in each class. Accuracy, precision, recall,
specificity, Fl-score, and Mathew correlation coefficient are
reported.

The evaluation of the model based on individual class
accuracies in a multi-class problem is not recommended
due to the calculation method used. In this approach, the
accuracy of a specific class is determined by considering
it as the positive class and all other classes as the negative
class. Consequently, if a class has a smaller sample size,
the model is more likely to achieve a higher individual
class accuracy for the smaller class. Conversely, the model
may achieve a lower accuracy for the majority class. This
exact phenomenon was observed in the current study. For
instance, Epidural hemorrhage, which had the lowest num-
ber of samples, achieved a very high accuracy of 99.72%.
However, a closer examination of the precision and recall
values reveals their relatively low percentages of 75.37% and
59.08%, respectively. Precision represents out of the total
predicted positive cases, what percentage were actually posi-
tive. Here, Intraparenchymal hemorrhage exhibits a precision
of 90.20%, indicating that 90.20% of the cases classified
as intraparenchymal hemorrhage were indeed true positive
instances, while the remaining 9.80% were misclassified as
intraparenchymal hemorrhage, but actually belong to other
categories. Similarly, subdural hemorrhage demonstrates a
precision of 66.44%, indicating that only 66.44% of the cases
classified as subdural hemorrhages were accurately identi-
fied, whereas the rest were assigned incorrectly. The model
achieved an overall precision of 85.45%. Recall, also known
as sensitivity, represents what percentage of the actual posi-
tive cases were actually captured by the model. It is observed
from the table that, the recall for intraventricular hemorrhage
is 82.20%, indicating that the model accurately predicted
82.20% of all the intraventricular hemorrhage cases present
in the test set. Similarly, the recall for epidural hemorrhage is
59.08%, meaning that the model correctly identified 59.08%
of all epidural hemorrhage cases. It is evident that the model
did not perform well in predicting epidural hemorrhage cases,
despite having a high overall accuracy. One plausible rea-
son behind this discrepancy could be the lack of sufficient
samples for the epidural hemorrhage class in the dataset.
As epidural hemorrhages are relatively rare compared to other
types of hemorrhages, there may not be enough training data
for the model to learn and generalize effectively for this
specific class. The model achieved high specificity or true
negative rate for all classes. It represents the percentage of
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TABLE 2. Classification performance for the proposed model.

Class ACC PRE
Any 0.9632 | 0.8940
Epidural 0.9972 | 0.7537
Intraparenchymal | 0.9854 | 0.9020
Intraventricular 0.9897 | 0.8786
Subarachnoid 0.9751 | 0.7390
Subdural 0.9618 | 0.6644
Overall 0.9802 | 0.8545

REC SPE F1 MCC
0.8432 | 0.98327 | 0.86786 | 0.8470
0.5908 | 0.99911 | 0.66236 | 0.6659
0.7822 | 0.99569 | 0.83787 | 0.8326
0.8220 | 0.99585 | 0.84935 | 0.8445
0.7120 | 0.98784 | 0.72525 | 0.7124
0.8035 0.9725 0.7273 0.7107
0.7603 | 0.9928 0.7899 | 0.7714

correctly predicted negative instances out of all actual nega-
tive instances. The F1-score, a metric derived from precision
and recall, proves to be a valuable measure for evaluating the
model’s performance in this context. Table 2 highlights that
intraventricular hemorrhage achieved the highest F1-score,
while epidural hemorrhage obtained the lowest F1-score.

V. CONCLUSION

In this paper, we developed a deep learning-based CAD sys-
tem for intracranial hemorrhage classification from CT scan
of brain. We used windowing method for data preprocessing
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and optimized the DenseNet architecture hyperparameters
using Bayesian optimization. Since the dataset is quite large,
we first optimized the DenseNet architecture for a smaller
subset of the dataset and obtained the best performing model.
Then we retrained the best model on the larger dataset.
According to our experimental results, the proposed model
demonstrates the potential for accurate detection of hemor-
rhage from CT scans. Although our proposed method has
some limitations, including the limited number of CT scans
containing epidural hemorrhages and the lack of patient
medical histories, it also has some advantages. By making
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accurate and reliable diagnoses, it can assist doctors and
improve patient outcomes. Our future work will involve test-
ing the model’s efficacy in clinical settings and refining it
based on feedback from medical professionals. Our aim is
to gain acceptance of deep learning based models within the
medical community, with the potential to positively impact
decision-making, patient care, and outcomes.
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