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All over the world, bananas are one of the most common fruits. It accounts for nearly 16% of global fruit 
production. However, every year, a large amount of banana yield losses occur due to different diseases of the 
banana leaf. It is essential to identify these diseases at an early stage in order to increase banana production. 
A visual inspection is the most common method of identifying banana leaf diseases. With a visual inspection, 
errors are common, time is a factor, and expertise is required. This study shows how deep learning and 
Bayesian optimization can be used to effectively diagnose banana leaf diseases from images without any 
human intervention. We collected the Banana Leaf Spot Diseases (BananaLSD) dataset from various locations in 
Bangladesh. The dataset consists of images of three banana leaf diseases: Pestalotiopsis, Sigatoka, and Cordana. 
Our proposed BananaSqueezeNet model performed exceptionally well in diagnosing banana leaf diseases from 
the images with an overall accuracy of 96.25%, precision of 96.53%, recall of 96.25%, specificity of 98.75%, 
F1-score of 96.17%, and MCC of 95.13%. The BananaSqueezeNet model outperforms some state-of-the-art 
convolutional neural networks that include EfficientNetB0, MobileNetV3, ResNet-101, ResNet-50, InceptionNet-

V3, and VGG16. The BananaSqueezeNet model also detected seven other diseases that affect banana leaves, 
fruits, and stems, including banana fruit scarring beetle, black sigatoka, bacterial soft rot, pseudo stem weevil, 
yellow sigatoka, banana aphids, and panama disease, with an accuracy of 95.13%. BananaSqueezeNet will enable 
banana growers to detect banana diseases early, and we hope that it will ultimately lead to an increase in banana 
production in Bangladesh and around the world.
1. Introduction

Bananas are grown in over 130 countries, primarily in tropical and 
subtropical regions. Their origin can be traced back to South-East Asia 
[1]. Bananas are a highly sought-after staple food, accounting for nearly 
16% of global fruit production and ranking as the second largest fruit 
behind citrus. In terms of world trade, bananas are the fifth most im-

portant food crop, following coffee, cereals, sugar, and cacao [2]. There 
are two main types of bananas: sweet or dessert bananas and kitchen 
bananas or plantains. They can be consumed raw or processed, and 
contain various bioactive molecules such as phenolics, carotenoids, bio-

genic amines, and phytosterols, which are beneficial for human health. 
They also have high levels of antioxidants. Historically, bananas have 
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been used to treat various chronic degenerative disorders. The World 
Health Organization recommends that individuals consume 400 grams 
of fruit and vegetables per day [3]. To meet the global demand, ba-

nanas are produced in many countries. India is the largest producer 
of bananas, accounting for 27% of global production [2]. Global ba-

nana production totals 128,778,738 tonnes from an area of 5,517,027 
hectares. Bangladesh produces 833,309 tonnes of bananas from 48,850 
hectares of land [4].

Many diseases frequently infect banana crops. There are multiple 
pathogens responsible for leaf spot diseases worldwide, which cause 
severe yield losses every year. Some commonly reported leaf spot dis-

eases include sigatoka diseases such as black sigatoka (Mycosphaerella 
fijiensis), yellow sigatoka (Pseudocercospora musicola), eumusae leaf spot 
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(Mycosphaerella eumusae) [5,6], exserohilum leaf spot (Exserohilum ro-

stratum) [7], cordana leaf spot (Cordana musae) [8], plantain zonate 
leaf spot (Pestalotiopsis menezesiana) [9], banana freckle disease (Phyl-

losticta musarum) [10]. An assessment of the banana leaf blight fun-

gal population was recently conducted in several areas of Bangladesh. 
Consequently, a new banana leaf blight (pestalotiopsis microspora) was 
identified in Bangladesh [11]. Unlike the zonate leaf spot, the initial 
symptom of this new leaf spot was found as a narrow dark brown le-

sion, which later on turned into an irregular brown spot with a golden 
yellowish margin.

Plant diseases largely limit banana production. In order to curb the 
disease’s progression, it is crucial to assess the severity of the disease 
in order to take proper control measures. Traditionally, plant patholo-

gists estimate plant disease severity by visually inspecting the disease 
symptoms. Unfortunately, this technique is ineffective and very expen-

sive if a large area is to be covered. Agriculturists are increasingly using 
automated disease diagnosis models because of the advent of digital 
cameras and computer technology. In recent times, the diagnosis of 
plant disease severity has been undertaken by deep learning image-

based automatic analysis [12]. In Bangladesh, Artificial Intelligence (AI) 
and remote sensing technology have been used to detect crop diseases 
such as wheat blast [13]. However, the use of deep-learning techniques 
for detecting plant diseases is not very common in Bangladesh, despite 
their widespread use in smart agriculture globally. In Tanzania, deep 
learning techniques such as Vgg16, Resnet18, Resnet50, Resnet152, and 
InceptionV3 were used to detect fusarium wilt and black sigatoka in ba-

nana [14]. In Germany, LeNet Convolutional Neural Network (CNN) 
architecture was used to classify banana leaf diseases like sigatoka and 
speckle [15].

In this study, we proposed a very fast and lightweight CNN to diag-

nose three prominent banana leaf diseases that include Pestalotiopsis, 
Sigatoka, and Cordana leaf spot of banana leaf. We optimized four CNN 
architectures with Bayesian Optimization to achieve better results.

The main contributions of this study are:

1) Banana Leaf Spot Diseases (BananaLSD) Dataset: We compiled a 
dataset that includes images of banana leaves with three major ba-

nana leaf diseases, including sigatoka, pestalotiopsis, and cordana, 
as well as healthy leaves. The dataset was collected from Banga-

bandhu Sheikh Mujibur Rahman Agricultural University (BSM-

RAU) experimental field and different banana fields located in 
Bangladesh.

2) BananaSqueezeNet: We proposed a very fast and lightweight 
CNN architecture optimized with Bayesian Optimization titled Ba-

nanaSquezeeNet that can identify three prominent banana leaf dis-

eases from banana leaf images. The BananaSqueezeNet model can 
also identify diseases of banana fruit and stem.

3) Smartphone Application for Banana Leaf Disease Identifica-

tion: We developed a smartphone application that can diagnose 
banana leaf diseases from real-world images of banana leaves, 
making it convenient for farmers and other stakeholders. The ap-

plication will allow farmers to take precautionary steps to prevent 
banana yield loss by stopping the spread of disease.

The rest of the paper is organized as follows: In Section 2, we dis-

cussed the relevant literatures. In Section 3, we described the dataset 
and how it was collected. Then we discussed how we optimized the 
neural networks to identify banana leaf diseases using Bayesian opti-

mization. In Section 4, the experimental results are presented. In Sec-

tion 5, we discussed the findings of this research. Finally, the paper is 
concluded in Section 6.

2. Related works

In order to properly apply control measures and manage plant dis-
2

eases, early disease detection is critical. There are several approaches 
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for detecting plant diseases. One of the most common approaches is 
to visual detection. The process of visually identifying plant diseases, 
however, is labor-intensive and less accurate. One alternative is to per-

form laboratory analysis. However, this method is time-consuming, re-

quires technical knowledge, and lab facilities, which are not available to 
many farmers in underdeveloped countries [16]. Aside from this con-

ventional methods, AI has also been used to detect plant diseases in 
recent decades [17]. Object recognition and image classification were 
previously performed using features obtained from different feature 
extraction algorithm that includes Scale-Invariant Feature Transform 
(SIFT) [18], Histogram of Oriented Gradients (HoG) [19], and Speeded 
Up Robust Features (SURF) [20]. However, the automatic recognition 
of objects and the classification of images have progressed immensely 
in recent years with the use of Convolutional Neural Networks (CNN) 
[21,22]. In 2014, Hernández-Rabadán et al. developed a method for 
segmenting diseased plants in uncontrolled environments using a com-

bination of SOMs and Bayesian Classifiers [23].

In 2022, Bhuiyan et al. [24] first reported the occurrence of Pestalo-

tiopsis microspora causing leaf blight of banana in Bangladesh. In 2022, 
Medhi & Deb [25] released a dataset named PSFD-MUSA that contains 
images of different diseases associated with banana leaves, fruits, and 
stems. Banana plants and their major diseases can be detected from 
aerial images using different machine learning methods [26]. Deep 
transfer learning based method to detect banana pests and disease 
symptoms from banana field images [27]. Sujithra et al. used different 
deep neural networks that include Convolution Neural Network (CNN), 
Radial Basis Neural Network (RBNN), and Feed-Forward Neural Net-

work (FFNN) to diagnose leaf diseases of banana and sugarcane [28]. 
The proposed models can classify black and yellow Sigatoka diseases 
of banana leaves. Banana leaf diseases can also be detected using Ga-

bor Extraction and Region-Based Convolution Neural Network (RCNN) 
[29]. Gopinath et al. presented an automated big data framework for 
classifying plant leaf disease using a Convolutional Recurrent Neural 
Network Classifier (CRNN) algorithm [30]. Using their method, they 
were able to differentiate between healthy and unhealthy leaves of dif-

ferent plants that include bananas, peppers, potatoes, and tomatoes. In 
order to achieve good performance on a particular task, optimization 
or hyperparameter tuning is very important. Several optimization tech-

niques are reported in the literature that can be used to optimize neural 
networks [31–34]. Arman et al. [35] showed how Bayesian optimiza-

tion and deep learning can be used effectively diagnose COVID-19 from 
chest X-ray images. Doke et al. showed how CNN and Bayesian opti-

mization can be used to identify cerebral micro-bleeds [36].

In this study, we proposed a fast and lightweight convolutional neu-

ral network named BananaSqueezeNet that can diagnose banana leaf 
diseases from images of banana leaves. As the BananaSqueezeNet model 
is very small, it can be easily deployed in embedded devices. The model 
can identify three banana leaf diseases - Sigatoka, Cordana leaf spot, 
and Pestalotiopsis leaf blight diseases in real-time using a smartphone 
camera. We also proposed a new dataset containing images of different 
disease affected banana leaves titled Banana Leaf Spot Diseases (Ba-

nanaLSD) dataset.

3. Materials and methods

3.1. Dataset description

The images of the banana leaves in the Banana Leaf Spot Diseases 
(BananaLSD) dataset were collected from the Bangabandhu Sheikh Mu-

jibur Rahman Agricultural University (BSMRAU) experimental field and 
different banana fields located in Bangladesh. Multiple smartphones 
were used to take the images. There are 937 images of four classes: 
healthy, Pestalotiopsis leaf blight, Sigatoka, and Cordana. These images 
were then labeled as one of the four classes by an expert plant patholo-

gist. In the train set, there were 89 images of healthy leaves, 133 images 

of leaves affected by Pestalotiopsis leaf blight, 433 images of leaves 
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Fig. 1. Banana leaves containing three prominent banana leaf diseases.
Table 1

Class distribution of images in the BananaLSD dataset.

Raw Dataset Augmented Dataset

Class Train Validation Test Train Validation Test

Healthy 89 20 20 400 20 20

Pestalotiopsis 133 20 20 400 20 20

Sigatoka 433 20 20 400 20 20

Cordana 122 20 20 400 20 20

Total 777 80 80 1600 80 80

affected by Sigatoka disease, and 122 images of leaves affected by Cor-

dana disease. There are 80 images in the validation set, and each class 
has 20 images. The test set also has 80 images, 20 images in each class. 
We also performed several augmentation techniques that include Gaus-

sian blur, horizontal flip, cropping, linear contrast, shear, translate, and 
rotate shear. Augmentation will help to address the data imbalance is-
sue and incorporate diversity into the data. These augmentations were 
performed only on the training set. The validation and the test set were 
kept the same. There are 400 images in each category of the training 
set in the augmented dataset.

Table 1 illustrates the number of images of different classes in the 
train, validation, and test set.

Random samples of images of Pestalotiopsis, Sigatoka and Cordana 
diseases from the BananaLSD dataset are shown in Fig. 1.

3.2. Measurement of performance

Several performance metrics have been used to measure the per-

formance of our models, including accuracy, precision, recall, the F1-

Score, and Receiver Operating Characteristics (ROC). The following 
equations were used to calculate accuracy, precision, recall, and F1-

score:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)
3

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
= 2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4)
The quantities of true positive, true negative, false positive, and false 
negative samples are represented by TP, TN, FP, and FN, respectively.

Receiver Operating Characteristic (ROC) curves plot the perfor-

mance of binary classifier systems as their discrimination thresholds are 
adjusted. The area under the ROC curve (AUC) provides a measure of 
how capable the model is in terms of distinguishing between different 
classes.

3.3. Bayesian optimization

Training a deep neural network involves optimizing numerous pa-

rameters to minimize a loss function. While the primary goal of the 
training process is to maximize predictive performance by accurately 
estimating the network parameters, the training process is dependent 
upon many other parameters as well, termed as hyperparameters. 
These hyperparameters do not undergo any training and remain fixed 
throughout the process. The choice of hyperparameters greatly im-

pact the overall training process, make convergence faster while also 
avoiding local minimas. However, deep learning models are expen-

sive to train, and re-evaluating models with different hyperparameters 
are highly inefficient. To mitigate this issue, various optimization al-

gorithms have been developed to find the best set of hyperparameters. 
Bayesian Optimization is one such algorithm that utilizes prior knowl-

edge to determine the best candidate to evaluate in the next stage. Given 
a function 𝑓 ∶ ℝ𝑑 ↦ ℝ, Bayesian Optimization seeks to find the loca-

tion 𝑥 ∈ℝ𝑑 that corresponds to the global maximum or minimum of 𝑓 . 
Bayesian Optimization uses prior knowledge to obtain the posterior us-

ing the Bayes rule, which is then evaluated using an acquisition function 
to determine the next set of hyperparameters to test.

In this experiment, the Expected Improvement (EI) acquisition func-

tion was used. EI picks the next set of points that achieves the high-

est expected improvement over the current best 𝑓 (𝑥+) where 𝑥+ =
𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖→𝑥1∶𝑡

𝑓 (𝑥𝑖) and 𝑥𝑖 is the queries at the 𝑖𝑡ℎ time step.

The 𝑡 + 1𝑡ℎ point 𝑥(𝑡+1) is selected using the equation:

𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝔼(||ℎ𝑡+1(𝑥) − 𝑓 (𝑥∗)|||𝐷𝑡) (5)

Here, 𝑓 is the ground truth function, ℎ𝑡+1 is the posterior at 𝑡 + 1𝑡ℎ
timestep, 𝐷𝑡 is the training data and 𝑥∗ is the position where 𝑓 takes its 
maximum value.

Thus, the function tries to select the point that minimizes the dis-
tance to the maximum of the objective function. However, as the ground 
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Fig. 2. Methodology of our work.
truth function 𝑓 is unknown, a modified acquisition function was pro-

posed.

𝑥(𝑡+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝔼(𝑚𝑎𝑥{0, ℎ𝑡+1(𝑥) − 𝑓 (𝑥+)}|𝐷𝑡) (6)

Here, 𝑓 (𝑥+) is the maximum value observed thus far. The equation 
for GP surrogate is:

𝐸𝐼(𝑥) =

{
(𝜇𝑡(𝑥) − 𝑓 (𝑥+) − 𝜖)Φ(𝑍) + 𝜎𝑡(𝑥)𝜙(𝑍), 𝑖𝑓𝜎𝑡(𝑥) > 0
0, 𝑖𝑓𝜎𝑡(𝑥) > 0

(7)

𝑍 =
𝜇𝑡(𝑥) − 𝑓 (𝑥+) − 𝜖

𝜎𝑡(𝑥)

Here, Φ(.) indicates the CDF and 𝜎(.) indicates the PDF. Hence, from 
the equations it can be observed that the EI will be high when the 
expected value of 𝜇𝑡(𝑥) − 𝑓 (𝑥+) is high or when the uncertainty 𝜎𝑡(𝑥)
around a certain point is high.

Hence, to summarize, Bayesian Optimization utilizes an acquisition 
function to evaluate the effectiveness of a set of hyperparameters on 
a surrogate function, an estimate of the objective function, which is 
the true but unknown function. Bayesian optimization is most effective 
when the objective function is computationally expensive to evaluate 
repeatedly.

3.4. Our approach

The methodology of our work is presented in Fig. 2. At first, the 
data collection was done. The dataset consists of images of banana 
leaves of four categories. These are healthy leaves, Cordana affected 
leaves, Pestalotiopsis affected leaves, and Sigatoka affected leaves. Ex-

perts carefully labeled the images. A data cleaning step by an expert 
data scientist was taken to remove the inconsistent images. The dataset 
is then split into the train-validation-test sets. The training set consists of 
777 images with four categories (Healthy: 89, Pestalotiopsis leaf blight: 
133, Sigatoka: 433, and Cordana: 122). The validation and test sets 
consist of 20 images from each category. The images are preprocessed 
using different preprocessing techniques that include - resizing, zero-
4

centering, and normalization.
Fig. 3. Augmentation of banana leaf images.

In order to handle data imbalance and incorporate diversity in our 
data, we used several augmentation techniques that include - Gaussian 
blur, horizontal flip, cropping, linear contrast, shear, translate, and ro-

tate shear. These augmentations were performed only on the training 
set during training. The validation and the test set were kept the same. 
A demonstration of the augmentations that we have performed in this 
work is shown in Fig. 3.

We used Convolutional Neural Network (CNN) to perform the classi-

fication task. CNN has two types of layers - feature extraction layers and 
classification layers. The feature extraction layers extract the features 
from the image, whereas the classification layer performs the classifi-

cation of the image based on the extracted features. The CNN model 
size must be small since we intend to deploy it on a mobile device 
so that farmers can use it in their fields. For this reason, we trained 
some lightweight CNN models - SqueezeNet [37], MobileNet V3 [38], 
EfficientNet [39]. The benefit of using these lightweight models is that 
these models can be deployed in embedded devices as they are very 

small in size.
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SqueezeNet [37] is a lightweight CNN architecture designed to pre-

serve model accuracy with fewer parameters. Fire modules are used in 
order to achieve this. A fire module has a squeeze and expand layer. 
A squeeze layer has only a 1 x 1 filter, whereas an expand layer has 
both 1 x 1 and 3 x 3 filters. Many fire modules are stacked one over 
another with some convolution layer and skip connections to form the 
SqueezeNet architecture. One exciting thing about SqueezeNet is that it 
doesn’t have any fully connected layer. This greatly helps to reduce the 
model parameters, and hence keeping the model size small. SqueezeNet 
reached AlexNet level accuracy even after having 50x fewer parameters 
and less than 0.5 MB model size.

MobileNets [38] are lightweight CNN architecture mainly designed 
for mobile and embedded device applications. Along with the con-

volution layers for feature extraction, MobileNets also use depthwise 
separable convolution [40], which significantly reduces the number of 
parameters in a neural network, thereby decreasing its size. MobileNet 
also uses two hyperparameters, namely - width multiplier and resolu-

tion multiplier, in order to shrink the models. In our experiments, we 
used the MobileNet V3 [41], which was designed by bringing some it-
erative improvements on MobileNet V1 [41] and MobileNets V2 [42]. 
In MobileNet V3, some expensive layers are redesigned, and a squeeze-

and-excitation block [43] was introduced.

EfficientNets [39] are a family of neural network architectures de-

signed using neural architecture search technique. Various types of 
scaling techniques like width, depth, resolution, compound scaling are 
used to scale the baseline network in order to obtain a family of models. 
EfficientNets were able to surpass state-of-the-art accuracy on ImageNet 
and five other datasets with fewer parameters and FLOPS.

A residual neural network (ResNet) [44] was created to make neu-

ral networks go deeper. In CNN, each layer usually identifies only one 
distinct feature. So, a network with a lot of layers should be able to 
find more patterns than one with a few layers. However, this causes a 
problem known as the “vanishing gradient,” where the information gets 
lost in the process of moving through many layers. ResNet solves this 
issue by making use of skip connections amongst residual blocks. This 
results in the ability to train larger networks without losing much infor-

mation. There are different kinds of ResNet, like ResNet50, ResNet101, 
and ResNet152. The number at the end of the name shows how deep 
the model is.

We also used transfer learning technique to train our CNNs [45]. 
Transfer learning technique involves transferring knowledge from one 
task to another. The model improves much faster and converges to a 
better final result if transfer learning is used [45]. This method is very 
useful for image classification, as we often do not have a large enough 
dataset to train large models from scratch. But with transfer learning, 
we start from models pre-trained on large datasets like the ImageNet 
[46]. Hence, we can use these learned feature maps instead of starting 
from scratch every time. The pre-trained model is fine-tuned on the 
target dataset in the next step.

4. Experimental results

4.1. Implementation details

Table 2 illustrates the training configurations of the neural networks 
for our experiments. In addition to influencing the training process, 
these parameters significantly impact the model’s performance. Opti-

mizers determine how to update the model’s weights during training, 
while loss functions determine how the model will be penalized when 
wrong predictions are made. The number of epochs determines the 
number of times the model will encounter the entire training dataset. 
The mini-batch size determines the number of training examples used 
in each training iteration. In cases where the model does not progress, 
early stopping and patience are used to determine how long the train-

ing should continue before stopping. Finally, transfer learning indicates 
5

whether the model will be initialized with pre-trained weights. We used 
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Table 2

Training configuration.

Training Configuration

Optimizer Adadelta, Adam, RMSprop, SGD

Loss Function Categorical cross-entropy

Transfer Learning Yes

Mini-Batch Size 32

Number of epochs 15

Early Stopping Yes

Patience 5

Fig. 4. Convergence analysis.

the Adadelta, Adam, RMSprop, SGD optimizers, and categorical cross-

entropy loss function in this work. The number of epochs was set to 15, 
and the mini-batch size was set to 32. Early stopping with patience of 
5 was used during the experiments. Transfer learning was used during 
the experiments to improve training and performance.

4.2. Optimization of neural network hyperparameters using Bayesian 
search

In this work, we tuned four neural networks using Bayesian Opti-

mization: EfficientNet, MobileNet, ResNet, and SqueezeNet. The tuned 
hyperparameters were: learning rate, optimizer, and L2Regularization. 
Fig. 4 illustrates the convergence plot of the four optimized models. 
The Y-axis represents the minimum validation loss after 𝑛 trials. The 
X-axis represents the number of neural networks trained. It is observed 
from Fig. 4 that MobileNet had the highest validation loss after the op-

timization was completed. The validation loss obtained by EfficientNet, 
ResNet, and SqueezeNet were quite close. However, the lowest valida-

tion loss was obtained by ResNet.

After completing the optimization, three Partial Dependence Plots 
(PDP) were generated. These PDPs capture the relation between the 
hyperparameters and the objective function. Two hyperparameters are 
plotted against each other, and their relationship to the objective func-

tion is shown in each plot. The value of the objective function at a 
specific region can be understood by color. There are mainly two col-

ors in the plot: yellow and blue. Yellow represents the search space 
regions where the value of the objective function or validation loss 
is minimum, and blue represents the search space regions where the 
value of the objective function is more. PDPs for the SqueezeNet ar-

chitecture are shown in Fig. 5. Hyperparameter values and objective 
function often follow straightforward relationships, as seen in the PDP 
with L2 regularization and optimizer. However, sometimes the relation-

ships are complex, as we see in the PDP with the optimizer and learning 
rate. RMSprop optimizer with a learning rate lower than 10−4 gives the 
least validation error, marked as a red star in Fig. 5a. SGD performed 
well when the learning rate was around 10−3, and Adadelta worked 

well when the learning rate was around 10−4. As seen in the PDP with 
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Fig. 5. Illustration of the relation between different hyperparameters and their influence on the objective function using Partial Dependence Plots.
L2 regularization and the optimizer, the objective function is not sig-

nificantly affected by L2 regularization. SGD and Adam performed well 
for any values of L2 regularization. The Adadelta optimizer performed 
the worst. The best value of the objective function was obtained with 
the RMSProp optimizer when the L2 regularization was close to 10−6 In 
the PDP with L2 regularization and learning rate, it is evident that the 
learning rate completely dictates the objective function, in contrast to 
the L2 regularization. The region where the learning rate is 10−3 and 
10−4 seems the most promising. The best value of the objective func-

tion is found when the L2 regularization value is close to 10−6 and a 
learning rate value is close to 10−4.

Table 3 provides a summary of the optimization process. In the ta-

ble, the observed value of the objective function is displayed along with 
the hyperparameters for the model: learning rate, optimizer, and L2Reg-

ularization. Each row in the table represents an objective function value 
observed in a particular iteration and the associated hyperparameters. 
6

It is observed from the table that the objective function reached its 
minimum value during iteration 22 of the optimization process. The 
objective function value at that iteration was 0.005, and the hyperpa-

rameters used to build the model were: learning rate 8.9e-05, RMSprop 
optimizer, and L2Regularization 1e-06.

4.3. Evaluation of the optimized models

4.3.1. Evaluation results

Fig. 6 shows the confusion matrix for each of the models. In Ef-

ficientNetB0, the sigatoka and the healthy leaf images were classified 
with 100% accuracy. Three pestalotiopsis and seven cordana leaf im-

ages were misclassified as sigatoka. Only 12 images out of 20 Cor-

dana images were properly classified by MobileNetV3. 18 healthy and 
19 pestalotiopsis images were properly predicted. All 20 sigatoka im-

ages were accurately classified. This model performed the worst of all, 
mostly due to poor cordana classification. ResNet-101 is the second best 

model based on performance on the test set. Eight images out of 80 
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Fig. 6. Confusion matrices.

Table 3

Bayesian optimization of the SqueezeNet architecture.

Iteration No Objective Learning Rate Optimizer L2Regularization

1 0.489 0.001 Adadelta 0.0001

2 0.011 7.8e-05 Adam 5.9e-05

3 1.182 0.003 RMSprop 1.2e-06

4 0.645 0.0013 Adam 1.1e-05

5 0.017 2.8e-05 RMSprop 0.0018

6 0.346 0.0001 SGD 6.2-06

7 1.359 1.2e-05 SGD 0.0008

8 1.002 0.0004 Adadelta 4.5e-05

9 0.902 0.0021 RMSprop 5.3e-06

10 0.097 0.0030 Adadelta 1.3e-05

11 1.426 1.5e-05 Adadelta 0.0011

12 0.031 0.0006 SGD 0.0027

13 1.036 0.0034 RMSprop 3.4e-05

14 1.569 7.8e-05 Adadelta 1.2e-05

15 0.052 0.0002 RMSprop 8.3e-05

16 0.139 0.0001 SGD 2.2e-05

17 0.482 0.0008 Adam 0.0067

18 0.916 2.6e-05 SGD 7.8e-05

19 1.102 0.0025 RMSprop 0.0005

20 1.001 0.0014 RMSprop 0.0001

21 0.179 0.0018 Adadelta 7.8e-05

22 0.005 8.9e-05 RMSprop 1e-06

Table 4

Assessment of the effectiveness of four optimized models for classification.

Model ACC PRE REC SPE F1 MCC

EfficientNetB0 87.50 91.66 87.50 95.83 87.67 84.74

MobileNetV3 86.25 89.74 86.25 95.41 86.22 83.01

ResNet-101 90.00 92.86 90.00 96.66 90.30 87.53

SqueezeNet 96.25 96.54 96.25 98.75 96.17 95.14

were misclassified. Among these, 5 belong to the cordana class. Us-

ing SqueezeNet, all images belonging to the healthy, pestalotiopsis, and 
sigatoka classes were correctly predicted. 3 Cordana images were mis-

classified. Overall, all models predicted the sigatoka class with 100% 
accuracy. sigatoka also has the highest false positive rate. All models 
had trouble classifying the cordana leaf images.

Table 4 shows the classification performance of four optimized mod-

els: EfficientNetB0, MobileNetV3, ResNet-101, and SqueezeNet. The 
performance metrics are accuracy (ACC), precision (PRE), recall (REC), 
specificity (SPE), F1 score (F1), and Matthews Correlation Coefficient 
(MCC). Among the four models, SqueezeNet has the highest values 
for all performance metrics, with an accuracy of 96.25%, precision of 
96.54%, recall of 96.25%, specificity of 98.75%, F1 score of 96.17%, 
7

and MCC of 95.14%. MobileNetV3 has the lowest values for all met-
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the
Fig. 7. Loss and accuracy analysis of

rics, with an accuracy of 87.5%, precision of 91.66%, recall of 87.5%, 
specificity of 95.83%, F1 score of 87.67%, and MCC of 84.74%.

Fig. 7 shows the change of loss and accuracy with the number of 
epochs for the best models from all four architectures. With increasing 
epochs, accuracy increases while loss decreases until they reach satu-

ration for each model. MobileNetV3 achieves the smoothest learning 
curve, and the SqueezeNet model has the roughest learning curve.

The Receiver Operating Characteristic (ROC) curves for Efficient-

NetB0, MobileNetV3, ResNet-101 and SqueezeNet models are shown in 
Fig. 8. In case of EfficientNetB0 model, the area under the ROC curve 
for detecting Cordana, Healthy, Pestalotiopsis, and Sigatoka respec-

tively were 91.67%, 100%, 100%, and 99.25% (8a). For MobileNetV3 
model, the area under the ROC curve for detecting Cordana, Healthy, 
Pestalotiopsis, and Sigatoka respectively were 92.45%, 100%, 100%, 
and 98.25% (8b). For the ResNet-101 model, the area under the ROC 
curve for detecting Cordana, Healthy, Pestalotiopsis, and Sigatoka re-

spectively was 94.75%, 100%, 100%, and 99.33% (8c). In the case of 
the SqueezeNet model, the area under the ROC curve for detecting Cor-

dana, Healthy, Pestalotiopsis, and Sigatoka respectively was 89.83%, 
97.83%, 99.83%, and 98.92% (8d).

4.3.2. Complexity comparison

Comparison of complexities of different architectures is shown in 
Table 5. While all four models require similar training time, SqueezeNet 
has a very small model size and number of parameters which is suitable 
for deployment scenarios. Due to having a relatively small number of 
parameters, it requires the least inference time of 17.84 s for the whole 
8

test set. MobileNetV3 and EfficientNetB0 have slightly larger inference 
best models from each architecture.

times and they have a smaller number of Floating Point Operations 
(FLOPs) than SqueezeNet. On the other hand, ResNet-101 has quite a 
large model size and number of parameters. Due to the large number 
of parameters, ResNet-101 also requires more inference time than the 
other three models.

4.4. BananaSqueezeNet: best performing model identified using Bayesian 
search

The classification performance of the BananaSqueezeNet model on 
various classes is presented in Table 6. The table includes the model’s 
accuracy, precision, recall, specificity, F1-score, and Matthews Correla-

tion Coefficient (MCC) for each class. The BananaSqueezeNet performs 
very well, achieving an overall accuracy of 96.25% and a high F1 
score of 96.17%. In particular, the model performs very well on the 
healthy and Pestalotiopsis classes, achieving an accuracy of 98.75% 
and 100%, respectively. The model also performs well on the Siga-

toka class, achieving an accuracy of 97.5%. In the Cordana class, the 
model achieves an accuracy of 96.25%, slightly lower than the other 
classes. Overall, these results suggest that the BananaSqueezeNet model 
is highly effective at classifying banana leaf diseases.

4.5. Comparing BananaSqueezeNet model with other state-of-the-art 
models

We have compared the proposed BananaSqueezeNet model with 
four other state-of-the-art models found in the literature. These mod-
els are: ResNet-50 [44], Inception-V3 [21], and VGG-16 [47]. The 
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Fig. 8. Receiver operating characteristic (ROC) curve.

Table 5

Assessment of the complexity of four optimized models.

Model Training Time Inference Time Model Size Number of Parameters MACs FLOPS

EfficientNetB0 54 m 27 s 18.502 s 20.5 MB 4.01 M 400.39 M 0.41 G

MobileNetV3 60 m 40 s 18.38 s 16.6 MB 4.21 M 227.08 M 0.23 G

ResNet-101 58 m 3 s 23.54 s 171 MB 42.51 M 7.85 G 7.88 G

SqueezeNet 57 m 20 s 17.84 s 4.78 MB 737.48 k 743.36 M 0.75 G
Table 6

Assessment of the effectiveness of the BananaSqueezeNet model for classifica-

tion.

Class ACC PRE REC SPE F1 MCC

Healthy 98.75 95.23 100 98.33 97.56 96.77

Pestalotiopsis 100 100 100 100 100 100

Sigatoka 97.50 90.90 100 96.67 95.23 93.74

Cordana 96.25 100 85.00 100 91.89 89.90

Overall 96.25 96.53 96.25 98.75 96.17 95.13

experimental results are shown in Table 7. It is observed from the 
9

table that the BananaSqueezeNet model significantly outperforms 
Table 7

Assessment of the effectiveness of some larger models.

Model ACC PRE REC SPE F1 MCC

ResNet-50 86.25 89.26 86.25 95.03 85.46 82.97

Inception-V3 90.00 91.96 90.00 96.49 89.30 87.62

VGG-16 95.00 95.45 95.00 98.27 94.84 93.57

BananaSqueezeNet 96.25 96.54 96.25 98.75 96.17 95.14

ResNet-50, and Inception-V3. The VGG-16 model performs slightly 
better than those two, but the BananaSqueezeNet model still outper-
forms it.
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Table 8

Assessment of the generalizability of the BananaSqueezeNet model.

Class ACC PRE REC SPE F1 MCC

Banana Fruit Scarring Beetle 100 100 100 100 100 100

Black Sigatoka 99.03 90.38 100 99.03 94.94 94.56

Bacterial Soft Rot 96.30 100 82.24 100 90.25 0.88.64

Pseudo Stem Weevil 96.10 93.17 100 96.10 96.46 92.43

Yellow Sigatoka 99.03 100 80.76 100 89.36 89.41

Banana Aphids 100 100 100 100 100 100

Panama Disease 99.80 100 90.00 100 94.74 94.77

Overall 95.13 97.65 93.29 95.14 95.11 92.69
4.6. Generalizability of the BananaSqueezeNet model

In order to test the generalizability of the BananaSqueezeNet model, 
we trained and tested the model on the PSFD-Musa dataset [25]. The 
dataset contains 5,170 images of seven common banana leaf, fruit, 
and stem diseases: banana fruit scarring beetle, black sigatoka, bac-

terial soft rot, pseudo stem weevil, yellow sigatoka, banana aphids, 
and panama disease. Table 8 presents the experimental results of 
the BananaSqueezeNet model on the PSFD-Musa dataset. The Ba-

nanaSqueezeNet model predicted the banana fruit scarring beetle and 
the banana aphids disease of banana leaves with 100% accuracy. The 
model also predicted black sigatoka, yellow sigatoka, and panama dis-

ease with 99% accuracy. Bacterial soft rot and pseudo stem weevil had 
the lowest prediction accuracy, with 96.3% and 96.1%, respectively. 
The BananaSqueezeNet model achieved an overall accuracy of 95.13%. 
To the best of our knowledge, this is the highest reported accuracy on 
this dataset.

4.7. Qualitative analysis

The learning process of neural networks is often considered a black 
box, since no simple explanation exists for how they work. Class Acti-

vation Map (CAM) helps in this regard by giving us insights on what 
each layer looks for in an image. As a result, we are able to figure 
out whether our network is focusing on the region of interest, or if it 
seems to be focusing on the wrong regions, we are able to adjust our 
network configuration. In Fig. 9, we have shown how our model pre-

dicts different diseases from an image. For cordana disease, we see that 
our network has correctly concentrated on the central part of the leaf 
where the disease has actually occurred. In case of pestalotiopsis, there 
are multiple areas of interest in the leaf, with the disease mostly spread-

ing at the bottom. The CAM for this image shows the larger heatmap 
at the bottom, and also identifies the slight variation in the middle. 
Similarly, we can see that our network can accurately detect the siga-

toka disease pattern since the heatmap is generated correctly over the 
affected leaves.

4.8. App for banana growers and stakeholders

We have developed a web application to bring our model into the 
real world. Users can upload a photograph of a banana leaf and check if 
a disease is present in that leaf. The application processes the uploaded 
image and makes the prediction using a Flask backend. The prediction 
begins when a user captures an image of a banana leaf or selects an 
image to upload and submits it through the web application’s user in-

terface. The Flask backend then receives the image and passes it through 
our model, which has been trained to identify banana leaf diseases from 
images. Once the prediction has been made, the Flask backend returns 
the prediction to the user via the web application user interface. The 
user can then see the predicted disease and use this information to seek 
attention or treatment for their plants, if necessary. Fig. 10 shows that 
the application can accurately predict the disease in the uploaded im-
10

age. Overall, the web application provides a convenient and efficient 
way for users to quickly receive a prediction of the disease present in 
an image, as the model is very fast and lightweight.

5. Discussion

In this study, we proposed a lightweight and fast CNN named Ba-

nanaSqueezeNet for identification of diseases of banana leaves, fruits 
and stems. We initially compared the BananaSqueezeNet model with 
two lightweight CNN models that include EfficientNetB0 and Mo-

bileNetV3 and a comparatively larger model, ResNet-101. As most of 
these models are very small, they can be easily deployed in embedded 
devices. Hence, we can use these models to classify three leaf diseases: 
Sigatoka, Cordana leaf spot, and Pestalotiopsis leaf blight disease in ba-

nana leaves in real-time using a smartphone camera. The lightweight 
models used in our experiments only take up about 4.78 to 16.6 MB of 
disk space when trained, and ResNet-101 takes 171 MB. whereas heavy-

weight architectures like the VGG16 took about 512 MB of disk space 
when trained [48]. This performance shows a distinct path toward de-

veloping a smartphone-assisted disease diagnosis device for use on a 
global scale.

We also compared the BananaSqueezeNet model with state-of-the-

art models for computer vision that includes ResNet-50, Inception-V3, 
VGG-16. The BananaSqueezeNet model outperforms all the other mod-

els in terms of performance. It is also the smallest of all of these models, 
making it more suitable for deployment in mobile devices.

We also used a deep learning technique called transfer learning. 
When trained on a large enough dataset, the earlier layers of a deep 
convolutional neural network detect more straightforward features like 
edges, shapes, and simple patterns. These features are standard in al-

most any computer vision task, and thus, this knowledge can be reused 
in other datasets. Instead of training from scratch, we started with mod-

els pre-trained on the ImageNet dataset and then fine-tuned them for 
our dataset. We used the Bayesian optimization technique to find the 
best possible hyperparameters for our models.

Of the four models that were trained and optimized, BananaSqueeze-

Net achieved the highest accuracy of 96.25% despite having the small-

est model size. The other three models ResNet, EfficientNetNet and 
MobileNet, achieved 90%, 87.5% and 86.25% accuracy, respectively. 
The SqueezeNet model is the smallest, with a size of only 4.78 MB and 
ResNet is of 171 MB.

We also tested the generalizability of our work by evaluating its 
performance on a larger dataset of banana leaf, fruit, and stem diseases, 
titled PSFD-MUSA [25]. The BananaSqueezeNet model performed re-

markably on this dataset, confirming its generalizability.

However, a few limitations are still present in this paper. The dataset 
that we used was quite small. It would also have been better to in-

clude images of banana leaf of different countries, which would have 
increased the diversity of the data. Overall, the present approaches are 
reasonably well to diagnose leaf blight of banana (Pestalotiopsis mi-

crospora), a newly reported disease of banana in Bangladesh [24], and 
separate this disease from Sigatoka, and Cordana leaf spots; and is ex-
pected to improve in the future with more training data.
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Fig. 9. Class activation map generated using the BananaSqueezeNet architecture for different banana leaf samples.
Our work aims to create a convenient and straightforward approach 
of diagnosing banana leaf diseases. Farmers or other stakeholders can 
take pictures of banana leaves from the field using the app and identify 
the disease within seconds. Selvaraj et al. [26] used a different approach 
where they detected banana plant and their major diseases from aerial 
images using different machine learning methods. The authors in [27]

discuss a deep transfer learning based method to detect banana pests 
and disease symptoms from banana field images. They detected five 
major banana diseases. Similarly in [28] the authors proposed methods 
for diagnosing only two banana leaf diseases: black and yellow siga-

toka. In our work, we showed how we can detect 9 banana leaf, fruit, 
and stem diseases that include pestalotiopsis, sigatoka (black sigatoka, 
yellow sigatoka), cordana, banana fruit scarring bettle, bacterial soft 
rot, pseudo stem weevil, banana aphids, and panama disease.

Finally, our goal is not to replace the laboratory technique of 
pathogen identification or to replace any established diagnosis ap-

proaches, but rather to supplement them. Laboratory techniques are 
always more reliable for diagnosing the plant disease than visual in-
11

spection systems. Even at the early stage of a disease, diagnosis is 
very challenging through visual observation. Therefore, alternate ap-

proaches such as CNNs would provide additional support to diagnose 
plant disease using smartphones. Keeping the current global 3.5 bil-

lion smartphone users [49] in our mind and a rapid rise of smartphone 
usage, we strongly believe that our lightweight models could be an 
additional support to prevent yield loss. Our effort to distinguish leaf 
diseases of bananas could be a great example of plant disease diagnosis 
in real-time using a smartphone camera.

6. Conclusion

In this paper, we demonstrated how different diseases that affect 
banana leaf, fruit, and stem can be detected from images. We collected 
a dataset of banana leaf images from the BSMRAU experimental field 
and different farmers’ fields in Bangladesh. We proposed a lightweight 
CNN architecture named BananaSqueezeNet which can quickly iden-

tify leaf diseases from banana leaf images with high accuracy. Since 
the BananaSqueezeNet model is very lightweight, it can be easily de-
ployed on mobile devices. We hope that the BananaSqueezeNet model 



Smart Agricultural Technology 4 (2023) 100214Md.A.B. Bhuiyan, H.M. Abdullah, S.E. Arman et al.

Fig. 10. Screenshots taken from the web-app classifying banana diseases.
will be used by farmers and stakeholders worldwide for early diagnosis 
of banana leaf diseases and take precautionary steps. Future research 
will investigate the efficacy of the BananaSqueezeNet architecture for 
identifying diseases of other plants’ leaves. Farmers should also be in-

structed on what measures to take based on the severity of the disease 
in future research.
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