
Environmental Research 197 (2021) 111107

Available online 1 April 2021
0013-9351/© 2021 Elsevier Inc. All rights reserved.

Prediction of batch sorption of barium and strontium from saline water 

B.S. Reddy a,1, A.K. Maurya b,1, Sathishkumar V E c, P.L. Narayana b, M.H. Reddy d, 
Alaa Baazeem e, Kwon-Koo Cho a,*, N.S. Reddy b,** 

a Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, Jinju, 52828, South Korea 
b School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, 52828, South Korea 
c Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode, 638101, Tamilnadu, India 
d Department of Mechanical Engineering, St. Peter’s Engineering College, Hyderabad, India 
e Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia   

A R T I C L E  I N F O   

Keywords: 
Artificial neural networks 
Prediction 
Sorption 
Sensitivity analysis 
Saline water 
Petroleum industries 

A B S T R A C T   

Celestite and barite formation results in contamination of barium and strontium ions hinder oilfield water pu-
rification. Conversion of bio-waste sorbent products deals with a viable, sustainable and clean remediation 
approach for removing contaminants. Biochar sorbent produced from rice straw was used to remove barium and 
strontium ions of saline water from petroleum industries. The removal efficiency depends on biochar amount, 
pH, contact time, temperature, and Ba/Sr concentration ratio. The interactions and effects of these parameters 
with removal efficiency are multifaceted and nonlinear. We used an artificial neural network (ANN) model to 
explore the correlation between process variables and sorption responses. The ANN model is more accurate than 
that of existing kinetic and isotherm equations in assessing barium and strontium removal with adj. R2 values of 
0.994 and 0.991, respectively. We developed a standalone user interface to estimate the barium and strontium 
removal as a function of sorption process parameters. Sensitivity analysis and quantitative estimation were 
carried out to study individual process variables’ impact on removal efficiency.   

1. Introduction 

The water produced from oil and gas reservoirs comprises organic 
chemicals, mineral ions (Na+, Ca2+, Mg2+, CO3

2− , and SO4
2− ), dissolved 

salts (NaCl), heavy metals, and other radioactive metallic ions such as 
barium and strontium (Ba(II), and (Sr(II)) than the maximum contami-
nant levels for drinking water (Yost et al., 2016; Zhai et al., 2021). 
Among all those elements, the radioactive Ba(II) and Sr(II) toxic ions 
come from nuclear weapon testing, power plant, research facilities, and 
mines (Prelot et al., 2018). The continuous discharge of fluid waste will 
spread into the environment and harms the natural water bodies, 
wildlife, agriculture, and human health (Al-Ghouti et al., 2019; 
Kaveeshwar et al., 2018; Reddy et al., 2021b). Moreover, the Ba(II)/Sr 
(II) ions will harm the desalination system (damages in reverse osmosis 
membranes) due to the interactions of the CO3

2− , and SO4
2− anions in 

underground/seawater to form mineral scale fouling (Zhang et al., 
2019). In the petroleum industry, the re-injection of oilfield-produced 

water is limited due to mineral scale formation (Ayirala et al., 2018; 
Katende and Sagala, 2019; Sivalingam et al., 2019). The strontium and 
barium sulfate are some of the most dominant mineral scale deposits in 
oilfield water due to low solubility, high hardness, high resistance to 
chemical treatments (Kamal et al., 2018). It is essential to remove Ba 
(II)/Sr(II) ions before discharging them into the environment and water. 
These scales are formed by the injection of low-quality water comprising 
high absorptions of Sr(II)/Ba(II) cations with the downstream formation 
of water containing sulfate ions (Bukuaghangin et al., 2016). Therefore, 
it is essential to control the generation of sulfate scales for improving the 
production of clean water. 

There are several techniques used to reduce the formation of sulfate 
scale, for instance, the flow filtration process (like membrane separa-
tions, adsorption columns, and sand filters), chemical scale inhibitors, 
sorption, and batch separation (skimmers, chemical precipitation tanks, 
and API separators) (Fakhru’l-Razi et al., 2009; Fard et al., 2017; Kamal 
et al., 2018; Nishiyama et al., 2016). Among all, the sorption technique 
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is widely used to remove the Ba(II) and Sr(II) ions from the 
oilfield-produced water (Younis et al., 2017). However, the sorption 
technique is expensive, and researchers focused on preparing cheap 
biochar as carbon-based sorbents made from agricultural wastes (Li 
et al., 2019; Younis and Moustafa, 2017). Biochar sorbents successfully 
played a crucial role in removing organic pollutants and heavy metals 
from the wastewater (El-Salamony et al., 2017; Mohubedu et al., 2019; 
Zhou et al., 2019). Biochar produced from rice straw was used for the 
removal of Ba(II)/Sr(II) ions from oilfield effluent water treatment 
(Rashidi and Yusup, 2017). The sorption efficiency of the Ba(II)/Sr(II) 
depends on the biochar (g/L), pH, temperature (oC), time (h), and Ba/Sr 
ratios. It is crucial to know the influence of the sorption conditions to 
achieve high ion removal efficiency. However, it is challenging to 
optimize sorption conditions for higher efficiency due to nonlinear and 
complex relations among the process parameters. Developing mathe-
matical equations based on adsorption kinetics and isotherm equations 
is laborious and time-consuming. Therefore, there is a need for a 
computational study to understand the complex and nonlinear re-
lationships among the process parameters and removal efficiency. Data 
based artificial neural network (ANN) method is an appropriate tool to 
analyze the sorption relationship. ANN has been successfully used for 
predicting the Zn(II) ion removal (Hoseinian et al., 2020), heavy metals 
(Nieva et al., 2020), and the Cr(VI) removal (Nag et al., 2020) from 
wastewater and achieved good accuracy. 

In this work, we present an ANN approach to the sorption process for 
Ba(II)/Sr(II) ions removal from saline water by using rice straw-based 
biochar. We developed a systematic ANN framework to determine the 
relationship among batch adsorption input variables on the removal of 

Ba(II)/Sr(II). The considered process variables are biochar amount, pH, 
contact time, temperature, and Ba/Sr concentration ratio. The specific 
objectives of the present work are: 

(1) To compare the ANN predicted results with experimental obser-
vations, predictions from RSM, kinetic and isotherm equations.  

(2) To develop user-friendly ANN software for Ba(II)/Sr(II) removal 
efficiency for easy use based on the best architecture weights.  

(3) Sensitivity analysis and virtual experimentation method used to 
study the impact of process variables on removal efficiency. 

2. Materials and methods 

2.1. Experimental data 

The biochar sorbent was prepared by using rice straw. (Younis et al., 
2020). Total 30,000 mg/L (pH = 6) total dissolved solids (TDS) saline 
water solution simulates the oilfield wastewater real composition. The 
composition of TDS in this saline solution was made to contain 50% 
anionic (45% Cl− and 5% (HCO3− and SO2-

4) and 50% cationic con-
stituents (40% (Na++K+), 9.5% (Ca2++Mg2+), and 0.5% (Ba2++S2+)) 
based on molecular weight. The input variables are biochar (1–5 g/L), 
pH (3–9), temperature (20–50 ◦C), time (1–24 h), and Ba/Sr ratio 
(0.1–100%), and the output variables are Ba(II) and Sr(II), respectively. 
The experimental data of the TDS saline water contains biochar (g/L), 
pH, temperature (oC), time (h), and Ba/Sr ratios (%) and respective % 
removal of barium (Ba(II)) and strontium (Sr(II)). The data consists of 50 
experimental conditions; from the complete database, we divided 80% 
(40 datasets) to develop the ANN model and 20% (10 datasets) to 
validate the model performance. The statistics and the total datasets 
were presented in Table 1&2. 

2.2. Artificial neural network (ANN) model development 

An ANN, inspired by the human brain, is a dominant modeling 
technique for linear or nonlinear relationships, capturing and repre-
senting complex input/output associations (Hasson et al., 2020). The 
unique features of ANN like parallelism, consistency, training, learning, 
and generalization made it an appropriate tool for a wide range of 

Table 1 
Statistics of the input and output variables used in the current study.  

Variables Minimum Mean Maximum Std. Dev 

Biochar (g/L) 1 3 5 1.6 
pH 3 6 9 2.5 
Temperature (oC) 20 35 50 12.4 
Time (h) 1 12.5 24 9.5 
Ba/Sr ratio 0.1 50 100 41.2 
Sorption of Ba(II) (μmol/g) 1.4 118.3 871 203.4 
Sorption of Sr(II) (μmol/g) 2.3 189.55 1157.8 270.8  

Fig. 1. Schematic representation of the proposed ANN model.  
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problems such as classification, prediction, filtering, function approxi-
mation, and recognition. There are many ANN techniques; in the present 
work, we used Feed Forward Neural Network with backpropagation 
algorithm. 

Fig. 1 shows the illustration of the current study’s detailed ANN 
procedure. The process parameters (inputs) and Ba(II) and Sr(II) (out-
puts) data were normalized between 0.1 and 0.9 by using a normalizing 
equation before using in the network (Reddy et al., 2020; Sadan et al., 
2016). The ANN program was written in C language, and the corre-
sponding graphical user interface (GUI) was designed in the JAVA 
program (Reddy et al., 2015, 2021a). The ANN model was trained with 
the backpropagation algorithm with a sigmoid activation function 
(Lippmann, 1987). To obtain the model’s best architecture, we varied 
hidden layers, neurons in the hidden layer, and the hyperparameters 
(learning rate, momentum term, and iterations) and evaluated the root 
mean square error (RMSE), adj. R2 and Pearson’s r along with the 
average error in output predictions (MAE). 

To obtain the best architecture, first, the model was tested with 
different hidden layers (one, two, and three) consists of 2–20 hidden 
neurons at a constant momentum term (0.3), learning rate (0.5), and 
iterations (5000). The two hidden layers with eight hidden neurons 
achieved absolute minimum error, as shown in Fig. S1 (see in supple-
mentary file). The 5-8-8-2 architecture was trained with varying mo-
mentum term and learning rate (0.1–0.9). We found the absolute 
minimum error with the momentum of 0.8 and learning rate of 0.5, as 
shown in Fig. S2 & S3. Finally, we changed the iterations from 0 to 8000; 
at 6000 iterations, we achieved the minimum RMSE and average error 
shown in Fig. S4. We concluded that the best model has a 5-8-8-2 ar-
chitecture with a momentum term of 0.7 and a learning rate of 0.7 at 
6000 iterations. 

2.3. Transformation of network weights 

The ANN model communicates the input and output data by trans-
forming coefficients and holds the evidence about the association be-
tween process variables and Ba(II) and Sr(II) removal. Each neuron is 
associated with a different transformation of weights, which designates 
the asset between the process variables and output variables. Fig. 2 
(a&b) shows the initial and final change of coefficients after 6000 

Fig. 2. Distribution of weights (a) initial and (b) best model weights (5-8-8-2) 
of the removal of Ba(II)/Sr(II). 

Fig. 3. Comparison between the experimental removal of Ba(II) and Sr(II) with the ANN model and published the RSM model.  
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iterations. The best ANN architecture (5-8-8-2) contains 138 weights. 
The randomly distributed initial weights (±0.5) were transformed for 
the best model between − 4.69 and 3.73. Based on these altered weights, 
we created a standalone user interface design shown in Fig. 5 to analyze 
the relationship between batch sorption process parameters and the 
removal of Ba(II)/Sr(II). 

3. Results and discussion 

3.1. Accuracy of best ANN model 

Fig. 3 and Table 2 illustrated the comparison between the experi-
mental and the predicted removal of Ba(II)/Sr(II) of the ANN model for 
the train, test, and total datasets. Adj. R2 and Pearson’s r are statistical 
approximations to illustrate how close the measured and predicted 
values. As illustrated in Fig. 3, in both the training and testing data sets, 
the ANN model shows superior prediction compared to the response 

surface methodology (RSM) model. The Pearson’s and adj. R2 values for 
the Ba(II) and Sr(II) removal by ANN model are 0.997, 0.994, 0.995, 
0.991, and by the RSM model are 0.99, 0.981, 0.992, 0.983 respectively. 
We can conclude from these results that the present model was accurate 
than the RSM model (Younis et al., 2020) for the same data. 

3.2. Comparison of the ANN model with the kinetic/isotherm models 

Table 3 shows the comparison of correlation value (adj. R2) between 
the kinetic, isotherm equations with the ANN model predictions. The 
seven nonlinear isotherm models based on two/three-parameter 
empirical equations have been applied to identify the batch sorption 
mechanisms. The models considered are RedlichePeterson (R–P), 
Langmuir (L), Freundlich (F), Toth (T), Temkin (TK), Langmuir- 
Freundlich (L-F), Dubinin-Radushjevich (D-R), and isotherms, as 
described in Table 3. Surface and intraparticle diffusion models (kinetic 
models) such as Intra-particle diffusion (IPD), Dumwald-Wagner (D.W.), 

Table 2 
The experimental conditions and respective observation comparisons with the existing RSM model (Younis et al., 2020) and ANN model. Bold (41–50) datasets are 
considered as test datasets.  

S.No Biochar (g/L) pH Temp. (oC) Time (h) Ba/Sr ratio (%) Ba(II) removal Sr(II) removal 

Exp. RSM ANN Exp. RSM ANN 

1. 1 9 20 1 0.1 58.9 50.9 58.093 614.1 658.3 614.75 
2. 3 6 35 12.5 100 336.6 303.6 338.274 31.1 4.2 32.631 
3. 3 6 35 12.5 50 127.4 120 127.502 185.2 188.9 186.027 
4. 5 9 50 24 0.1 5.7 29.9 7.118 337.1 437.3 341.149 
5. 5 6 35 12.5 50 82 52.3 85.606 143.6 109.9 144.48 
6. 3 6 35 12.5 50 127.7 120 125.8 189.2 188.9 187.2 
7. 5 9 50 1 0.1 7.3 8.8 7.522 293.3 286.3 293.64 
8. 5 3 50 24 100 164.5 187.6 167.094 9.5 16.7 15.454 
9. 3 6 35 12.5 50 125.8 120 127.502 187.2 188.9 186.027 
10. 3 6 35 12.5 50 116 120 127.502 194.9 188.9 186.027 
11. 1 9 50 24 100 846 806.1 848.226 173 230.4 173.503 
12. 1 3 50 1 0.1 88.3 19.6 85.483 476.7 478 469.899 
13. 5 9 20 24 100 226.3 276.3 232.263 14 37.7 11.407 
14. 5 3 20 24 0.1 21 8.5 23.337 262 257.2 263.041 
15. 3 6 35 12.5 50 125.6 120 127.502 192.7 188.9 186.027 
16. 3 6 35 12.5 50 128.1 120 127.502 193.6 188.9 186.027 
17. 1 6 35 12.5 50 319.1 299.1 325.932 436.8 396.5 429.45 
18. 3 6 35 1 50 27.9 54.5 27.185 78.4 105.6 84.491 
19. 5 3 20 1 100 71.8 31.6 75.845 34.6 86.9 29.647 
20. 3 6 35 12.5 50 120.6 120 127.502 188.3 188.9 186.027 
21. 5 3 20 24 100 218.2 194.7 225.039 23.2 24.1 20.896 
22. 3 6 35 12.5 50 127.8 120 127.502 189.9 188.9 186.027 
23. 5 3 50 1 100 34.8 24.5 37.169 34.6 79.4 29.123 
24. 1 3 50 1 100 334.1 345.7 332.312 3.3 44 1.465 
25. 3 6 35 24 50 157.5 185.5 164.165 263.3 272.1 257.877 
26. 1 3 20 24 0.1 82.1 103.5 84.52 771.3 798.9 764.612 
27. 5 9 50 1 100 73 83.8 75.826 7.3 − 22.5 1.553 
28. 5 9 20 24 0.1 1.4 22.8 2.514 336.4 357.6 328.637 
29. 1 9 50 1 0.1 45.3 43.9 46.726 755 737.9 747.714 
30. 3 9 35 12.5 50 105.7 146.4 107.919 203.6 238.4 204.115 
31. 3 6 20 12.5 50 142.2 123.5 139.672 196.8 170.8 193.761 
32. 1 9 50 1 100 477.9 482.9 482.128 54.8 53.6 49.806 
33. 1 3 20 24 100 655.9 653.6 659.449 139.2 145.3 134.24 
34. 5 9 50 24 100 226 269.2 225.977 5.2 45.2 1.082 
35. 1 3 20 1 100 314.4 352.7 315.813 2.3 36.5 − 0.981 
36. 1 3 20 1 0.1 29 26.7 31.197 314.3 398.4 310.028 
37. 5 9 20 1 0.1 16.1 15.8 − 0.1 210.8 206.7 220.414 
38. 1 9 50 24 0.1 110 143 103.357 1157.8 1133.5 1167.44 
39. 3 6 35 12.5 0.1 7.7 − 9.0 24.284 493.3 454.5 359.196 
40. 3 3 35 12.5 50 66.8 93.5 136.081 88.3 139.3 175.547 
41. 5 3 50 1 0.1 22 62.5 45.052 211.8 180.9 231.298 
42. 1 3 50 24 0.1 104.2 96.4 105.254 883.8 878.6 882.358 
43. 1 9 20 24 100 871 813.2 877.877 173.4 237.9 201.272 
44. 5 3 20 1 0.1 22.1 69.5 7.485 156.9 101.2 162.111 
45. 5 9 20 1 100 125 90.8 92.611 32.4 30 ¡3.945 
46. 5 3 50 24 0.1 7.5 ¡1.5 59.798 337.9 336.9 311.923 
47. 1 9 20 1 100 454.2 490 484.253 70.7 61.1 31.574 
48. 3 6 50 12.5 50 130.4 116.4 130.036 218.7 206.9 218.738 
49. 1 3 50 24 100 623.1 646.5 624.234 149.5 137.8 144.84 
50. 1 9 20 24 0.1 110.3 150.1 109.791 1143.3 1053.8 1140.1  
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Film diffusion (F.D.), and fractional power equation (FPE) used for the 
prediction of removal efficiency. Compared with seven isotherm and 
four kinetic models, the ANN model predictions were more accurate in 
estimating the sorption process. Calculating the Ba(II)/Sr (II) sorption 
rate constants (varying with time) by kinetic and isotherm models 
require laborious calculations, whereas ANN model predictions are 
simple and effective. The developed user-friendly ANN model can pre-
dict the sorption efficiency without prior knowledge of neural networks 
with a single mouse click. 

3.3. Single parameter sensitivity analysis on the removal of Ba(II)/Sr(II) 

Fig. 4 shows the predicted effect of individual process parameters on 
removing Ba(II)/Sr(II) from TDS saline water by keeping other param-
eters at a constant value. Fig. 4(a) shows with an increase in biochar 
from 1 to 5.0 g/L resulted in a decrease in the Ba(II)/S(II) removal. The 
main reason for decreasing the sorption efficiency at high biochar 
amounts is due to an increase in the number of freely available active 
sites, and it will cause unsaturated Ba(II)/Sr(II) during the adsorption 
process (Gorzin and Bahri Rasht Abadi, 2018). From these results, we 

Table 3 
Comparison of the ANN model with the various kinetic and isotherm models.  

Sr. No Kinetic/isotherm/ANN model Equation Adj. R-Squared References 

Ba(II) Sr(II) 

Isotherm models 
1 R–P qe =

KRCe

[1 + αRCnR
e    

0.97 0.991 (Foo and Hameed, 2010; Younis et al., 2016) 

2 L qe =
qm1KLCe

1 + KLCe 
(RL =

1
1 + KLCo

)    0.96 0.99 

3 F qe = Kf C
1/n
e  0.96 0.89 

4 T qe =
qm4KTCe

KTCe)(KTCe)(KTCe)
1/nT ]

nT  

0.975 0.992   

5 T.K. qe =
RT
bT

ln KTKCe  
0.91 0.97  

6 L-F 
qe =

qm3(KLFCe)
1/m

1 + (KLFCe)
1/m   

0.98 0.99   

7 D-R qe = qm2exp( − B  e2)

e = RT ln
(

1+
1
Ce

)

E =
1̅̅
̅̅̅̅

2B
√

0.742 0.886 

Kinetic models 
8 IPD qt = Kit0.5 + Ci  0.99 0.97 Younis et al. (2017) 

9 D.W. Log(1 − F2) = − K1/2.303t  0.99 0.99 Klapiszewski et al. (2017) 

10 F.D. Ln(1 − F) = Kf t  0.96 0.99 
11 FPE qt = K1tv  0.91 0.856 Khambhaty et al. (2009) 
12 ANN model  0.994 0.991 Present work  

Fig. 4. Impact of individual process parameter on Ba(II)/Sr(II) sorption efficiency: (a) biochar, (b) pH, (c) Ba/Sr ratios, and (d) time.  
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can conclude using small amounts of biochar will be sufficient in scale 
protection, i.e., in terms of its high affinity to uptake total Ba(II)/Sr(II). 
Fig. 4(b) displays the influence of pH on the sorption of Ba(II)/Sr(II); the 
sorption efficiency increased with the increase of pH from 3 to 9. At 
lower values of pH, the decrease in sorption efficiency is due to the 
positive charge density (H+ or H3O+) on the biochar surface due to the 
high concentration of hydronium ions (H+) in solution (Fard et al., 
2017). This positively charged surface should have improved electro-
static repulsion, with Ba(II)/Sr(II) metal ions present in the forms of M2+

and M(O.H.)+ at the edges of the biochar sorption sites (Fard et al., 
2017). However, at high pH values (7–9), the negatively charged bio-
char surfaces were increased and increase the electrostatic attraction (i. 
e., O––C–O–Ba2+-O-Si) of cationic Sr2+ and Ba2+ ions, thereby 
increasing the sorption of Ba(II)/Sr(II) from saline water (Ghaemi et al., 
2011; Kaveeshwar et al., 2018; Mahfouz et al., 2015). 

Fig. 4(c) illustrates the effect of varying Ba/Sr ratios from 0 to 100% 
on sorption efficiency. Increasing Ba/Sr ratios resulted in an increase in 
Ba(II) sorption efficiency and decreased Sr(II). It can be attributed to the 
surface activation and increases the Ba(II) sorption rate through the pore 
diffusion mechanism (Gorzin and Bahri Rasht Abadi, 2018). Fig. 4(d) 
explains the effect of time (1–24 h) on the sorption efficiency of Ba(II)/Sr 
(II) from the saline water. The sorption efficiency of Ba(II)/Sr(II) in-
creases with increasing time (h). More than 12 h time is essential to raise 
the metal acceptance rate because it permits an incessant upsurge in the 
mass-transfer driving force necessary to achieve maximum equilibrium 
(monolayer occupation of sorption sites) (Fard et al., 2017). 

3.4. Quantitative estimation by virtual experimental system (VES) 

This section describes the study of the quantitative effect of process 
parameters on the sorption efficiency of Ba(II)/Sr(II) by altering virtu-
ally. We predicted the Ba(II)/Sr(II) ‘s removal for the database’s mean 
values, and the values are similar to experimental observations. Table 4 
illustrates the quantitative estimation of Ba(II)/Sr(II) sorption efficiency 
by the virtual addition of process parameters. The Ba(II) and Sr(II) 
sorption efficiency at the mean process parameters was predicted as 
127.04 and 188.33, respectively. Fig. 5 illustrates the model’s graphical 
user interface at the mean process variables. There are infinite combi-
nations of possible experiments within the range of process parameters, 
and the model can predict with reasonable accuracy. To accomplish the 
experimental conditions of sample 42 (see Table 2), we changed the 
parameters virtually one by one. We estimated individual parameter 
effect quantitatively on the Ba(II)/Sr(II) removal using the model 
graphical user interface shown in Fig. 5. 

As shown in Table 4, the decrease in the biochar from 3.0 to 1.0 g/L 
resulted in increasing sorption efficiency of Ba(II) and Sr(II) by 198.48 
and 247.75 μmol/g, respectively. It means the decrease of every 1.0 g/L 
the sorption efficiency of Ba(II) and Sr(II) increases the 99.24 and 
123.87 μmol/g, respectively. The pH reduction from 6 to 3 resulted in a 
marginal decrease in the Ba(II) and Sr(II) removal. The marginal 
decrease in removal is due to decreasing the electrostatic attraction of 
cationic Sr2+ and Ba2+ ions (Fard et al., 2017). An increase in the tem-
perature from 35 to 50 ◦C increased in Ba(II) and Sr(II) removal by 7.38 
and 57.08, respectively. The significant reduction of Sr(II) removal is 

Fig. 5. The ANN model screenshot the prediction of barium and strontium removal for the mean process variables (virtual experimental system).  

Table 4 
Quantitative estimation of Ba(II)/Sr(II) sorption efficiency by Virtual Experimental System.  

Biochar (g/L) pH Temp. (oC) Time (h) Ba/Sr ratio (%) Sorption of Ba(II) (μmol/g) Changed Sorption of Sr(II) (μmol/g) Changed 

3 6 35 12.5 50 127.04 - 188.33 - 
1 6 35 12.5 50 325.52 198.48 436.08 247.75 
1 3 35 12.5 50 290.90 − 34.62 221.20 − 214.88 
1 3 50 12.5 50 298.28 7.38 278.28 57.08 
1 3 50 24 50 363.06 64.78 464.65 186.37 
1 3 50 24 0.1 103.15 − 259.91 879.15 414.5 
Actual sorption of Ba and Sr values for the sample. 42. 104.2  883.8   
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due to the higher mobility and lower density of the Sr(II) than the Ba(II) 
(Nishiyama et al., 2016). With an increase in the time from 12.5 to 24 h, 
the sorption efficiency was increased as expected. This could be attrib-
uted to the increasing monolayer occupation of sorption sites (Fard 
et al., 2017). Finally, with the increase in the Ba/Sr ratio from 50 to 
0.1%, the Ba(II) removal was decreased rapidly; simultaneously, the Sr 
(II) removal was increased to 414.5 μmol/g. The virtual adding process 
parameters were reached to the experimental conditions of sample 42 
(see Table 2). The calculated sorption efficiency of Ba(II)/Sr(II) is similar 
to the experimental Ba(II)/Sr(II) sorption efficiency of 104.2 and 883.8 
μmol/g, respectively. This method identifies each process variable’s 
influence quantitatively on Ba(II)/Sr(II) sorption efficiencies. The 
quantitative estimations agree with earlier predictions (Fig. 4). From 
these results, we can conclude that the developed ANN model can 
effectively predict the sorption efficiency of Ba(II)/Sr(II) from the 
wastewater. 

4. Conclusions 

The goal of this work is to model the relationships between the 
removal of Ba(II) and Sr(II) from the saline water as a function of five 
process parameters (biochar (g/L), pH, temperature (oC), time (h), and 
Ba/Sr ratios) by ANN. The ANN models show superior results than ki-
netic and isotherm equations based on the correlation coefficients (adj. 
R2 as 0.994 and 0.991 for Ba(II) and Sr(II) removal, respectively). 
Sensitivity analysis reveals the influence of process parameters on 
sorption efficiency. The developed graphical user interface is efficient in 
estimating the Ba(II)/Sr(II) sorption from the saline wastewater. The 
proposed virtual systems help reveal the relationship between process 
parameters and ions removal quantitatively. 

Supplementary data 

The supplementary files consist of ANN model development pro-
cedure, two-variable sensitivity analysis, qualitative estimation of the 
process parameters, and screenshots of the ANN model images’ graph-
ical user interfaces. 
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