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Abstract

The purpose of this study is to develop an artificial neural network (ANN)

model to predict and analyze the relationship between properties and process

parameters of polyvinyl chloride (PVC) composites. The tensile strength, duc-

tility, and density of PVC are modeled as a function of virgin PVC, recycled

PVC, CaCO3, di-2-ethylhexyl phthalate, chlorinated paraffin wax, and CaCO3

particle size. The ANN model is trained using the backpropagation algorithm.

The developed model was validated with a set of unseen test data. The correla-

tion coefficient adj. R2 values for test data were 0.95, 0.83, and 0.90 for tensile

strength, density, and ductility, respectively. The relationship between constit-

uents and properties of PVC composites were analyzed by sensitivity analysis,

index of relative importance, and quantitative estimation. The study concluded

that ANN modeling was a dependable tool for the optimization of constituents

for the desired properties of PVCs.
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1 | INTRODUCTION

Polyvinyl chloride (PVC) is one of the most widely pro-
duced valuable polymers worldwide.1 PVC is very flexible
for using products that require versatile properties. The dis-
tinctive features of the PVC are due to its various constitu-
ents. The properties of PVC depend on its components such
as plasticizers [di-2-ethylhexyl phthalate (DOP) and chlori-
nated paraffin wax (CPW)], fillers [calcium carbonate
(CaCO3), titanium dioxide, etc.], flame-retardants,

stabilizers, coloring, and antistatic agents, as well as
recycled PVC and other polymers.2–5 The inclusion of more
amount of fillers will reduce prices, but it affects the
processing and weakens properties.6,7 Recycled PVC
became a highly desirable component to use as one of the
constituents in PVC composite production due to availabil-
ity, economic, and environmental causes.6,8 The relation-
ship of these multicomponent with properties is
complicated and not precise until now. One way to obtain
the desired PVC properties is to understand the
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relationships between features and their constituents. Esta-
blishing a predictive model to correlate the relationship will
be highly desirable. Developing mathematical equations is
difficult, hence, data-driven techniques, artificial neural net-
works (ANN) are handy to relate multiple inputs and out-
puts. ANNs were successfully used for predicting
mechanical properties of medium carbon steels,9,10 titanium
alloys and deformation behavior in Ti alloys.11,12

The ANN models were used for various phenomena
in polymer composites; compressive strength of polyester
composites,13 mechanical properties of polymers,14–16

acoustic properties,17 specific volumes,18 PMMA fiber
diameter,19 clay nanocomposites20 and to the optimiza-
tion of ultrafiltration membranes.21 Yet, there are still a
couple of critical issues that need to be investigated.
Altarazi et al22 predicted properties as a function of its
constituents and concluded the need for modeling the
relationships between them. The purpose of this research
is to develop a systematic framework to discover the con-
nections between PVC properties and its constituents.

ANN models were developed for estimation of the
relationship between properties as a function of virgin
PVC, recycled PVC, CaCO3, DOP, CPW, and CaCO3 par-
ticle size. The objectives of the present study are

1. To predict the properties at new instances within the
predictive range.

2. To estimate the relationship between properties and
constituents.

3. To determine the optimum parameters for the maxi-
mum tensile strength of PVC composite.

2 | MATERIALS AND METHODS

The experimental data of the present work were collected
from published literature.22 The data consist of properties
(tensile strength, ductility, and density) of PVC and

respective constituents, that is, virgin PVC, recycled PVC,
CaCO3, DOP, CPW, and CaCO3 mean particle size. The
statistics of the data and the entire data are presented in
Tables 1 and 2, respectively.

2.1 | Modeling procedure

In the present study, the ANN model training program and
the graphical user interface design were written in C and
Java, respectively. We trained the feedforward neural net-
works with the backpropagation algorithm using the sig-
moid function as an activation function.23,24 The model
consists of six neurons (virgin PVC, recycled PVC, %
CaCO3, DOP, CPW, and CaCO3 particle size) in the input
layer and three neurons in the output layer (tensile strength
(MPa), ductility (% El), and density) as shown in Figure 1.
The model training involves adjusting the coefficients asso-
ciated with each connection among the neurons until the
calculated PVC composite's properties for each set of input
data are near to the experimental values. To define the ideal
architecture and to find the assurance of the model, the
complete datasets are divided into 36 training datasets and
12 testing datasets. By varying the hyperparameters of
ANN, selection of finest architecture for estimating the PVC
composite's properties was achieved with the help of aver-
age error of the test data (Etr) given as

Etr yð Þ= 1
N

XN

i=1
Ti yð Þ−Oi yð Þð Þj j ð1Þ

where Etr(y) is the average error in prediction for output
parameter y, N is the number of datasets, Ti(y) is the
targeted output, and Oi(y) is the output calculated. The
ANN model used for the prediction of PVC composite's
properties is shown in Figure 1. The ideal architecture
with the two hidden layers having eight hidden neurons
shows the average error value of tensile strength and duc-
tility, 9.17 and 0.77, respectively. Once the architecture
(6-8-8-2) finalized, we run the model by varying the
learning rate and momentum term one by one. Finally,
the optimum learning rate and momentum term of the
model are obtained as 0.5 and 0.6, respectively. We got
the smallest prediction errors of the tensile strength
(0.91) and ductility (0.133) at 15 000 iterations.

2.2 | Transformation of coefficients of
the ANN model

The prediction efficiency of the model depends upon the
nature and magnitude of the coefficients (weights) of the
ANN model. Figure 2 illustrates the values of initial and

TABLE 1 Statistics of the process variables used in the

present study

Variables Min Max Mean SD

Virgin PVC 0.196 0.491 0.339 0.125

Recycled PVC 0 0.295 0.142 0.125

DOP 0.079 0.246 0.148 0.066

CaCO3 0.196 0.54 0.334 0.138

CPW 0 0.049 0.016 0.019

CaCO3 particle size 5 10 7.5 2.526

Tensile strength 17.92 7.13 28.11 14.62

Ductility 1.93 3.27 2.35 3.75

Density 1.51 1.61 1.56 1.62
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TABLE 2 The experimental PVC composite's properties and ANN model predicted PVC composite's for six independent variables

TS Ductility Density
S. No VPVC RPVC DOP CaCO3 CPW CaCO3 ps Exp ANN Exp ANN Exp Pre

1 0.196 0.295 0.246 0.246 0 5 7.156 15.987 3.364 3.354 1.678 1.71

2 0.491 0 0.246 0.196 0.049 5 15.36 16.861 4.558 4.766 1.812 1.81

3 0.246 0.295 0.196 0.196 0.049 10 10.25 15.499 3.886 3.948 1.758 1.757

4 0.339 0.143 0.335 0.165 0 5 26.95 26.655 3.294 2.901 1.448 1.447

5 0.491 0.049 0.196 0.196 0.049 10 20.19 20.835 5.142 5.114 1.454 1.454

6 0.491 0.049 0.196 0.196 0.049 5 36.41 36.506 4.92 4.811 1.648 1.647

7 0.196 0 0.54 0.246 0 5 2.502 −3.706 3.462 3.362 1.696 1.695

8 0.491 0 0.246 0.246 0 5 11.24 7.52 3.642 3.758 1.494 1.493

9 0.196 0.295 0.393 0.079 0.02 10 12.38 15.501 3.652 3.808 1.602 1.601

10 0.491 0.196 0.196 0.098 0 5 43.24 42.24 2.42 2.506 1.62 1.618

11 0.196 0 0.54 0.246 0 10 2.19 1.458 3.216 3.152 1.798 1.797

12 0.344 0 0.54 0.098 0 10 8.35 8.347 2.522 3.088 1.66 1.659

13 0.491 0.049 0.196 0.246 0 5 12.70 12.958 3.58 3.448 1.62 1.622

14 0.196 0 0.54 0.196 0.049 10 3.458 6.5 3.222 2.963 1.684 1.683

15 0.393 0.295 0.196 0.079 0.02 5 14.44 15.884 4.358 3.802 1.864 1.863

16 0.246 0.295 0.196 0.246 0 10 10.02 16.418 1.984 2.9 1.796 1.795

17 0.196 0 0.54 0.196 0.049 5 3.676 2.618 3.186 3.451 1.78 1.779

18 0.196 0.147 0.54 0.098 0 5 12.37 13.057 2.352 2.855 1.956 1.956

19 0.196 0.295 0.246 0.196 0.049 10 30.37 15.293 4.676 4.184 1.882 1.881

20 0.196 0.295 0.246 0.196 0.049 5 10.19 14.204 5.128 5.082 1.292 1.292

21 0.491 0 0.246 0.246 0 10 6.438 10.627 3.582 3.875 1.75 1.749

22 0.339 0.143 0.335 0.132 0.033 5 17.17 18.818 3.216 3.463 1.508 1.508

23 0.491 0.049 0.196 0.246 0 10 38.90 38.956 1.21 1.168 1.602 1.602

24 0.246 0.295 0.196 0.246 0 5 25.45 16.103 3.264 3.223 1.558 1.706

25 0.393 0.295 0.196 0.098 0 10 16.13 19.335 2.336 2.589 1.868 1.873

26 0.393 0.295 0.196 0.079 0.02 10 18.13 16.135 2.444 3.213 1.592 1.6

27 0.246 0.295 0.196 0.196 0.049 5 12.52 14.529 4.406 4.878 1.828 1.836

28 0.196 0.147 0.54 0.079 0.02 10 8.39 8.609 2.668 2.575 2.07 2.073

29 0.344 0 0.54 0.079 0.02 5 9.844 9.476 3.592 3.115 1.794 1.804

30 0.491 0.196 0.196 0.079 0.02 10 15.00 13.659 4.77 4.707 1.68 1.692

31 0.393 0.295 0.196 0.098 0 5 18.18 16.909 3.472 3.224 1.658 1.669

32 0.491 0 0.393 0.098 0 10 14.84 13.2 3.868 3.872 1.588 1.599

33 0.196 0.295 0.246 0.246 0 10 15.60 16.382 3.702 2.964 1.576 1.759

34 0.491 0 0.393 0.079 0.02 5 19.18 20.617 3.42 3.364 1.646 1.838

35 0.491 0.196 0.196 0.098 0 10 50.12 50.767 0.814 0.792 1.766 1.351

36 0.344 0 0.54 0.079 0.02 10 8.036 8.381 2.616 2.936 1.798 1.589

37 0.491 0 0.393 0.079 0.02 10 20.46 18.817 2.126 4.25 1.522 1.532

38 0.196 0.147 0.54 0.079 0.02 5 16.63 7.859 2.444 3.186 1.49 1.5

39 0.196 0.147 0.54 0.098 0 10 16.13 13.767 1.074 2.571 1.528 1.538

40 0.339 0.143 0.335 0.165 0 10 16.33 22.156 3.112 2.762 1.682 1.694

41 0.196 0.295 0.393 0.098 0 5 15.82 15.502 4.164 3.95 1.872 1.705

42 0.196 0.295 0.393 0.079 0.02 5 13.94 14.572 3.186 4.735 1.792 1.797

(Continues)
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optimally trained model weights. The ANN architecture,
6-8-8-2, yields a total of 146 weights ((6 + 1) × 8 + ((8
+ 1) × 8 + ((8 + 1) × 2 = 146). Initial weights were

randomly generated between −0.5 and +0.5, and the
optimum model values of the weights are transformed to
−9.9 to +9.8, which indicates the weights within the sea-
rch spaces are capable of mapping the relationship
between the process parameters and properties.

3 | RESULTS AND DISCUSSIONS

3.1 | ANN model performance

The performance of the model was evaluated by predicting
properties for trained and unseen experimental data. The
comparison between the predicted and experimental prop-
erties was plotted as shown in Figure 3. The adjusted R2

values for the tensile strength, ductility, and density are
0.95, 0.90, and 0.83, respectively, for training and testing
datasets. From these correlation coefficients, we can con-
clude that the developed model is capable of estimating the
relationship between input parameters and the PVC com-
posite properties. Once the trained model is validated with

TABLE 2 (Continued)

TS Ductility Density
S. No VPVC RPVC DOP CaCO3 CPW CaCO3 ps Exp ANN Exp ANN Exp Pre

43 0.344 0 0.54 0.098 0 5 8.06 7.809 3.022 3.17 1.466 1.467

44 0.491 0 0.393 0.098 0 5 16.81 15.193 2.42 3.26 1.788 1.699

45 0.491 0 0.246 0.196 0.049 10 16.34 11.178 4.966 5.155 1.748 1.765

46 0.491 0.196 0.196 0.079 0.02 5 15.81 25.644 2.832 3.544 1.826 1.806

47 0.339 0.143 0.335 0.132 0.033 10 24.292 17.702 2.774 3.017 1.344 1.9

48 0.196 0.295 0.393 0.098 0 10 16.047 16.047 3.263 3.263 1.58 1.535

36-48 datasets are designated as test data sets.

FIGURE 1 Schematic representation of a

typical multilayer feedforward network based on

the backpropagation algorithm [Color figure can

be viewed at wileyonlinelibrary.com]

FIGURE 2 Transformation of neural networks weights

distribution as a function of iterations [Color figure can be viewed

at wileyonlinelibrary.com]
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unseen data, the entire data are used to develop a model to
correlate the relationship between PVC properties and the
constituents. We incorporated the ANN in a graphical user
interface as shown in Figure 4. Within the range of inputs,
infinite combinations of experiments are possible. As the
quantum of the results generated from the model is enor-
mous, we present only a few representative ones.

3.2 | Influence of process parameters on
PVC composites properties

3.2.1 | Single variable sensitivity analysis

Figure 5 shows the predicted effect of varying one input
parameter on properties, keeping the remaining input

FIGURE 3 Experimental

and predicted properties:

(A) tensile strength,

(B) ductility, (C) density

(36 training datasets and

12 testing datasets) [Color figure

can be viewed at

wileyonlinelibrary.com]

FIGURE 4 The screenshot of the prediction of properties for the virtual PVC system [Color figure can be viewed at wileyonlinelibrary.com]
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parameters at a constant value. Figure 5A illustrates the addi-
tion of wt% CaCO3; the addition of CaCO3 fillers enhances
the material stiffness (the elastic modulus), whereas it
reduces the tensile strength and increases the ductility.25,26

Figure 5B shows that the tensile strength of the virgin PVC is
increasing up to 50 MPa. The tensile strength depends on
the type of plasticizers used; triethyl phosphate as a plasti-
cizer will increase the tensile strength. However, in the case
of ductility, it decreases with increase of virgin PVC.20

Figure 5C shows that the recycled PVC from the bottles and
pipes possesses lower tensile strength and higher elongation
at break. The tensile strength will increase initially, and after-
ward, tensile strength will decrease because of the presence
of impact modifier in the recycled PVC.27 Figure 5D shows
that plasticizers reduce the tensile strength as it weakens the
bond holding the polymer molecules together, but it also
facilitates processing. The DOP plasticizer will decrease the
tensile strength and increase the ductility.28

FIGURE 5 Effect of process parameters on the PVC composite's properties: (A) wt% CaCO3, (B) virgin PVC, (C) recycled PVC,

(D) DOP, (E) CPW, and (F) CaCO3 particle size [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5E shows the effect of CPW as a plasticizer; it
has a weak bond holding the molecules so it will reduce the
tensile strength and increase the ductility.29 Figure 5F illus-
trates the increase of CaCO3 particle size; the tensile
strength will increase initially and then it will decrease.
However, in the case of ductility, initially, it will drop and
after 6.5 particle size, the ductility will increase because the
brittle to ductile transition temperature was reduced con-
firming the toughening (able to withstand great strain with-
out tearing or breaking) effect of the CaCO3 particle size.
Small contents of nanoparticles led to an increase in both
elastic modulus and yield stress, although the addition of
higher contents of nanoparticles did not lead to subsequent
increase in these properties.30

3.2.2 | Two variable sensitivity analysis

Here, we predicted the combined effect of parameters on
ductility and tensile strength. The predicted 3D surface plots
for the PVC composite properties with process parameters

are shown in Figure 6. Figure 6A,B shows the combined
influence of recycled PVC and, in the case of an increase in
recycled PVC, reduces the tensile strength because of the
presence of impact modifier in the recycled PVC.4 In the
case of CPW, it has weak bonding strength between the
plasticizers, not much effect on tensile strength, but in the
case of ductility, it increases with increasing of CPW.

Figure 6C,D illustrates the influence of both CaCO3

and DOP, in the case of increases of wt% CaCO3, decreases
the tensile strength. Ductility increases with increase in
CaCO3 fillers. In the case of DOP, there is no much effect
on tensile strength. But in this case, ductility increased with
increasing DOP because it weakens the bond holding poly-
mer molecules together, but it also facilitates processing.2

3.3 | Index of relative importance (IRI)

Here, we used the developed ANN model to calculate the
index of relative importance (IRI)

31 to identify the role of
constituents on properties. The nature and magnitude of

FIGURE 6 Prediction of 3D surface plots of the effect of recycled PVC, CPW, CaCO3, and DOP: (A) and (C) Tensile strength, (B) and

(D) ductility when the other process parameters are constant [Color figure can be viewed at wileyonlinelibrary.com]
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IRI indicate the significance of the input parameters on
the property. All variable prominence of a system is well
reported on a whole dataset.32,33 While one input was
varied with a ±5% offset, the other five inputs were kept
constant. After adding ±5% variation to all the inputs,
12 combinations of input data were created. These data

were fed to the ANN model (Figure 4) to predict the
properties and thereby to calculate (IRI) of each input
parameter. The calculation of IRI was well described in
the previous articles.9

We selected a sample number 28 shown in Table 2.
We estimated the relationship. Figure 7A,B shows that
the virgin PVC, recycled PVC, and CaCO3 particle size
are showing positive influence on tensile strength and
respective negative relationship with ductility. The
remaining three parameters, CaCO3, DOP, and CPW, are
acting negatively on tensile strength and showing posi-
tive influence on ductility. From these studies, we con-
clude that virgin PVC, recycled PVC, and CaCO3 are
more important than the other parameters. This method
provided the relationship between the constituents and
properties qualitatively for a particular case.

3.4 | Creation of virtual PVC composites

In this section, we estimated the relationship between prop-
erties and constituents quantitatively. We calculated the
average values of the database of PVC composites, and
those did not exist in experimental data. By using these
mean parameters, we predicted the PVC composite's prop-
erties with the help of the user interface of the model
(Figure 4). The predicted values for the virtual system of the
tensile strength and ductility are 28.11 and 2.35, respec-
tively, and these values are within the values of the experi-
mental values. We selected a sample (35 in Table 2) with
the tensile strength of 50.12 and the ductility of 0.814 from
the database. We changed each parameter individually to
the virtual system to achieve the experimental condition of
sample 35 and estimated the properties.

Table 3 shows the quantitative estimation of proper-
ties by the virtual addition of constituents. The change in
virgin PVC from 0.3391 to 0.491 resulted in a marginal
decrease of tensile strength and a respective increase in

FIGURE 7 The significance of various process parameters on

tensile strength and ductility [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 3 The quantitative estimation of PVC composite's properties from the virtual system

VPVC RPVC CaCO3 DOP CPW
CaCO3 particle
size

Tensile
strength Change ductility Change

0.3391 0.1429 0.3347 0.1487 0.0165 7.5 28.11 – 2.35 –

0.491 0.1429 0.3347 0.1487 0.0165 7.5 27.03 −1.07 5.15 2.80

0.491 0.196 0.3347 0.1487 0.0165 7.5 18.08 −8.95 5.31 −0.16

0.491 0.196 0.196 0.1487 0.0165 7.5 42.76 24.67 4.39 −0.92

0.491 0.196 0.196 0.098 0.0165 7.5 15.46 −27.29 4.82 0.43

0.491 0.196 0.196 0.098 0 7.5 53.89 38.43 1.59 −3.23

0.491 0.196 0.196 0.098 0 10 53.85 −0.041 0.96 −0.63

Experimental properties for these conditions 50.12 0.814

8 REDDY ET AL.
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ductility and surprisingly the results are contrary to the exis-
ting knowledge.34 An increase in recycled PVC reduces the
strength and ductility as expected.34 The decrease in CaCO3

from its mean value to 0.196 resulted in a drastic increase
in tensile strength and reduction in ductility. Altering the
values of DOP from its mean value (0.1487) to 0.098 caused
a significant rise in tensile strength and a marginal reduc-
tion in ductility and these results are in good agreement
with our earlier prediction (Figure 4D).35 Making the CPW
value zero from mean values resulted in a huge increase in
tensile strength and a respective significant decrease in duc-
tility.35 Finally, the increase in CaCO3 particle size from 7.5
to 10 resulted in no change in tensile strength and a small
decrease in ductility, as is expected.36 These calculations are
based on the network weights. After obtaining the experi-
mental condition of sample 35, the tensile strength and the
ductility are 50.12 and 0.814, respectively. However, the dif-
ferences or controversies in the predictions, the final values
of the predictions are near to the experimental values.

3.5 | Optimization of PVC constituents
for the desired output

We developed a standalone ANN software to model the
correlations between the constituents and properties, as
shown in Figure 8. The proposed ANN model was able to
recognize the optimal constituents of PVC composite for

the desired properties. We can adjust the variables
according to the desired output, as shown in Figure 8.
We want to explore the possible input parameters for the
maximum tensile strength and by keeping the minimum
values of virgin PVC due to its high cost. We used more
recycled PVC and minimum values of virgin PVC and
determined the respective combinations of other constit-
uents by using the ANN model. The highest tensile
strength of 53 MPa, ductility of 3.02%, and the density of
1.82 g cm−3 can be achieved with 0.491% virgin PVC,
0.295% recycled PVC, 0.246% CaCO3, 0.246% DOP, at
minimum values of CPW and CaCO3 particle size. As vir-
gin PVC is expensive, using recycled PVC is economical
and environmentally friendly.

4 | CONCLUSIONS

In this article, we provide a systematical ANN approach
for modeling the complicated relationship between PVC
properties and its constituents. The developed ANN
model can predict properties for an infinite combination
of process parameters with reasonable accuracy. R2

values for tensile strength, density, and ductility are 0.95,
0.83 and 0.90, respectively. The ANN model will be able
to predict the single variable and two variable impacts on
PVC composite's properties. We used the index of relative
importance (IRI) method and a virtual system to estimate

FIGURE 8 Optimization of process variables for the maximum tensile strength [Color figure can be viewed at wileyonlinelibrary.com]

REDDY ET AL. 9

http://wileyonlinelibrary.com


the influence of each process parameter on PVC compos-
ite's properties. The proposed methods will be useful to
correlate the relationship between multiple inputs and
outputs. We can use the proposed model to obtain the
constituents for the desired properties.

ACKNOWLEDGMENTS
N. S. Reddy acknowledges YSJ and RPR for the inspira-
tion. Authors acknowledge YKK and JK for their help
in the ANN model development. N. S. Reddy gratefully
acknowledge Prof. Katsuyo Thornton of the University
of Michigan, Ann Arbor and Prof. Mark Asta of the
University of California, Berkeley for their valuable
suggestions to improve the quality of the manuscript
during the Summer School for Integrated Computa-
tional Materials Education (NSF Grants #1058314 and
#1410461).

ORCID
Nagireddy Gari Subba Reddy https://orcid.org/0000-
0003-4206-4515

REFERENCES
[1] P. V. C. Kulshreshtha, Plast. Packag. 2003, 48, 63.
[2] I. N. Unar, S. A. Soomro, S. Aziz, J. Anal. Environ. Chem.

2010, 11(2), 44.
[3] J. Yu, L. Sun, C. Ma, Y. Qiao, H. Yao, Waste Manage. 2016,

48, 300.
[4] M.Wenguang, F. P. L.Mantia, J. Appl. Polym. Sci. 1996, 59(5), 759.
[5] N. Xu, J. Zou, W. Shi, J. Feng, M. Gong, Polym. Adv. Technol.

2005, 16(5), 378. https://doi.org/10.1002/pat.600[published.
[6] K. Abate, Chemist 2007, 84(2), 11.
[7] T. Kaully, A. Siegmann, D. Shacham, Polym. Compos. 2008, 29

(4), 396. https://doi.org/10.1002/pc.20435[published.
[8] N. Sombatsompop, S. Thongsang, J. Appl. Polym. Sci. 2001, 82

(10), 2478. https://doi.org/10.1002/app.2098[published.
[9] N. S. Reddy, J. Krishnaiah, H. B. Young, J. S. Lee, Comput.

Mater. Sci. 2015, 101, 120. https://doi.org/10.1016/j.commatsci.
2015.01.031[published.

[10] N. S. Reddy, J. Krishnaiah, S. G. Hong, J. S. Lee, Mater. Sci.
Eng. A 2009, 508(1–2), 93. https://doi.org/10.1016/j.msea.2008.
12.022[published.

[11] N. S. Reddy, C. H. Park, Y. H. Lee, C. S. Lee, Mater. Sci. Technol.
2008, 24(3), 294. https://doi.org/10.1179/174328408X276233
[published.

[12] N. S. Reddy, Y. H. Lee, J. H. Kim, C. S. Lee,Met. Mater. Int. 2008, 14
(2), 213. https://doi.org/10.3365/met.mat.2008.04.213[published.

[13] A. T. Seyhan, G. Tayfur, M. Karakurt, M. Tano�glu,Comput. Mater.
Sci. 2005, 34(1), 99. https://doi.org/10.1016/j.commatsci.2004.11.
001[published.

[14] H. Fazilat, M. Ghatarband, S. Mazinani, Z. A. Asadi,
M. E. Shiri, M. R. Kalaee, Comput. Mater. Sci. 2012, 58, 31.
https://doi.org/10.1016/j.commatsci.2012.01.012[published.

[15] S. Jayabal, S. Rajamuneeswaran, R. Ramprasath, N. S. Balaji,
Trans. Indian Inst. Met. 2013, 66(3), 247. https://doi.org/10.
1007/s12666-013-0255-9[published.

[16] L. Peponi, J. Biagiotti, L. Torre, J. M. Kenny, I. Mondragòn,
Polym. Compos. 2008, 29(3), 313. https://doi.org/10.1002/pc.
20408[published.

[17] N. H. Abu-Zahra, A. Seth, Mechatronics 2002, 12(9–10), 1083.
https://doi.org/10.1016/S0957-4158(02)00016-8[published.

[18] M. Moosavi, N. Soltani, Fluid Phase Equilib. 2013, 356, 176.
https://doi.org/10.1016/j.fluid.2013.07.004[published.

[19] M. K. Sadan, H. J. Ahn, G. S. Chauhan, N. S. Reddy, Eur.
Polym. J. 2016, 74, 91. https://doi.org/10.1016/j.eurpolymj.
2015.11.014[published.

[20] M. R. Nakhaei, A. Mostafapour, G. Naderi, Polym. Compos. 2017,
38(S1), E421. https://doi.org/10.1002/pc.23942[published.

[21] L. Chi, J. Wang, T. Chu, Y. Qian, Z. Yu, D. Wu, Z. Zhang,
Z. Jiang, J. O. Leckie, RSC Adv. 2016, 6(33), 28038. https://doi.
org/10.1039/c5ra24654g[published.

[22] S. Altarazi, M. Ammouri, A. Hijazi, Comput. Mater. Sci. 2018,
153, 1. https://doi.org/10.1016/j.commatsci.2018.06.003.

[23] Y. LeCun, Y. Bengio, G. Hinton, Nature 2015, 521, 436.
https://doi.org/10.1038/nature14539[published.

[24] R. P. Lippmann, IEEE ASSP Mag. 1987, 4(2), 4.
[25] N. Chen, C. Wan, Y. Zhang, Y. Zhang, Polym. Test. 2004, 23, 169.

https://doi.org/10.1016/S0142-9418(03)00076-X[published.
[26] J. Biagiotti, S. Fiori, L. Torre, M. A. López-Manchado,

J. M. Kenny, Polym. Compos. 2004, 25(1), 26. https://doi.org/
10.1002/pc.20002[published.

[27] D. Garcia, R. Balart, J. E. Crespo, J. Lopez, J. Appl. Polym. Sci.
2006, 101(4), 2464. https://doi.org/10.1002/app.23484[published.

[28] K. Aouachria, G. Quintard, V. Massardier-Nageotte,
N. Belhaneche-Bensemra, Polímeros 2014, 24(4), 428.

[29] N. Chan, G. Carran, D. Pagé, N. Cunningham, Heat deflection
and mechanical properties of PVC/PMMA/Clay composites, 2006,
157(1), 5.

[30] D. Eiras, L. A. Pessan, Mater. Res. 2009, 12, 517.
[31] N. S. Reddy, B. B. Panigrahi, C. M. Ho, J. H. Kim, C. S. Lee,

Comput. Mater. Sci. 2015, 107, 175. https://doi.org/10.1016/j.
commatsci.2015.05.026[published.

[32] V. Yangali-Quintanilla, A. Verliefde, T. U. Kim, A. Sadmani,
M. Kennedy, G. Amy, J. Membr. Sci. 2009, 342(1), 251. https://
doi.org/10.1016/j.memsci.2009.06.048.

[33] J. D. Olden, M. K. Joy, R. G. Death, Ecol. Modell. 2004, 178(3),
389. https://doi.org/10.1016/j.ecolmodel.2004.03.013.

[34] K. Jaidev, S. S. Suresh, O. K. Gohatre, M. Biswal, S. Mohanty,
S. K. Nayak, Waste Manage. Res. 2020, 38(3), 10.

[35] M. Matos, R. A. Cordeiro, H. Faneca, J. F. Coelho,
A. J. Silvestre, A. F. Sousa, Materials 2019, 12(14), 2336.

[36] P. N. Kumar, V. Nagappan, C. Karthikeyan, Mater. Today
Proc. 2019, 16, 1219.

How to cite this article: Reddy BRS,
Premasudha M, Panigrahi BB, Cho K-K,
Reddy NGS. Modeling constituent–property
relationship of polyvinylchloride composites by
neural networks. Polymer Composites. 2020;1–10.
https://doi.org/10.1002/pc.25612

10 REDDY ET AL.

https://orcid.org/0000-0003-4206-4515
https://orcid.org/0000-0003-4206-4515
https://orcid.org/0000-0003-4206-4515
https://doi.org/10.1002/pat.600%5Bpublished
https://doi.org/10.1002/pc.20435%5Bpublished
https://doi.org/10.1002/app.2098%5Bpublished
https://doi.org/10.1016/j.commatsci.2015.01.031%5Bpublished
https://doi.org/10.1016/j.commatsci.2015.01.031%5Bpublished
https://doi.org/10.1016/j.msea.2008.12.022%5Bpublished
https://doi.org/10.1016/j.msea.2008.12.022%5Bpublished
https://doi.org/10.1179/174328408X276233%5Bpublished
https://doi.org/10.1179/174328408X276233%5Bpublished
https://doi.org/10.3365/met.mat.2008.04.213%5Bpublished
https://doi.org/10.1016/j.commatsci.2004.11.001%5Bpublished
https://doi.org/10.1016/j.commatsci.2004.11.001%5Bpublished
https://doi.org/10.1016/j.commatsci.2012.01.012%5Bpublished
https://doi.org/10.1007/s12666-013-0255-9%5Bpublished
https://doi.org/10.1007/s12666-013-0255-9%5Bpublished
https://doi.org/10.1002/pc.20408%5Bpublished
https://doi.org/10.1002/pc.20408%5Bpublished
https://doi.org/10.1016/S0957-4158(02)00016-8%5Bpublished
https://doi.org/10.1016/j.fluid.2013.07.004%5Bpublished
https://doi.org/10.1016/j.eurpolymj.2015.11.014%5Bpublished
https://doi.org/10.1016/j.eurpolymj.2015.11.014%5Bpublished
https://doi.org/10.1002/pc.23942%5Bpublished
https://doi.org/10.1039/c5ra24654g%5Bpublished
https://doi.org/10.1039/c5ra24654g%5Bpublished
https://doi.org/10.1016/j.commatsci.2018.06.003
https://doi.org/10.1038/nature14539%5Bpublished
https://doi.org/10.1016/S0142-9418(03)00076-X%5Bpublished
https://doi.org/10.1002/pc.20002%5Bpublished
https://doi.org/10.1002/pc.20002%5Bpublished
https://doi.org/10.1002/app.23484%5Bpublished
https://doi.org/10.1016/j.commatsci.2015.05.026%5Bpublished
https://doi.org/10.1016/j.commatsci.2015.05.026%5Bpublished
https://doi.org/10.1016/j.memsci.2009.06.048
https://doi.org/10.1016/j.memsci.2009.06.048
https://doi.org/10.1016/j.ecolmodel.2004.03.013
https://doi.org/10.1002/pc.25612

	Modeling constituent-property relationship of polyvinylchloride composites by neural networks
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Modeling procedure
	2.2  Transformation of coefficients of the ANN model

	3  RESULTS AND DISCUSSIONS
	3.1  ANN model performance
	3.2  Influence of process parameters on PVC composites properties
	3.2.1  Single variable sensitivity analysis
	3.2.2  Two variable sensitivity analysis

	3.3  Index of relative importance (IRI)
	3.4  Creation of virtual PVC composites
	3.5  Optimization of PVC constituents for the desired output

	4  CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


