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stract 

is proposed work introduces a novel integrated evolutionary approach and its applications for modeling and optimization of 
portant manufacturing process namely gelcasting. Genetic programming (GP) is an evolutionary algorithm which uses 
nciple similar to Genetic algorithms (GA) to model highly non-linear and complex processes resulting in accurate and reliable 
dels. For developing models, GP method makes use of experimental data generated from the process.  For gelcasting process 
ut variables are solid loading, monomer content and ratio of monomers and performance measures are flexural strength and 

rosity. As the chosen performance measures are opposite in nature, there cannot be a single optimization solution. Hence the 
blem under consideration is to be formulated as multi objective optimization problem and solved using NSGA-II algorithm to 

rieve the Pareto optimal front. Pareto set of process parameters in a gelcasting process in multi objective optimization of 
xural strength porosity are obtained by executing these novel algorithms in a single run. 
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1. Introduction 

Gelcasting is a new ceramic forming process developed by the Oak Ridge National Laboratory (ORNL) in 
1990s. The manufacturing of complex shaped, high-quality ceramic parts are prepared by this process. The most 
important factor of the gelcasting technology is the use of an organic monomer solution that can be polymerized to 
form a strong, cross-linked solvent gel. The gelcasting process consists of the preparation of aqueous slurry of 
ceramic powder containing gel initiators, monomer, cross-linker, sintering aids, catalysts and other additives. 
Gelcasting consists of the dispersion of a kind of ceramic powder in an aqueous solution containing a gelation 
substance to form a stable suspension which is subsequently solidified in the mold. After sintering, material with 
uniform microstructure can be obtained [1-7]. In gelcasting, higher solid content of ceramic suspension can provide 
much more possibility to get higher density of the final ceramic products. Also the solid loading can be controlled at 
a desired level.  
 
Nomenclature 

Si3N4  Silicon Nitride  
GP   Genetic programming 
NSGA-II Non-dominated sorting genetic algorithms II 
MAM  Methacrylamide 
MBAM  N, N1-methylenebisacrylamide 
APS  Ammonium persulfate 
TEMED  Tetramethylethylenediamine 
Al2O3  Alumina 
Y2O3  Yttrium oxide 
x1  Solid loading 
x2  Ratio of monomers 
x3  Monomer content 
FS  Flexural strength 
P  Porosity 

 
Genetic Algorithms (GAs) are evolutionary programs that manipulate a population of individuals represented by 

fixed-format strings of information. An initial population of individuals (solutions) is generated for the problem 
domain and these then undergo evolution by means of reproduction, crossover and mutation of individuals until an 
acceptable solution is found [8]. Genetic algorithms, although very useful for simple problems, can restrict complex 
problems due to its inability to represent individuals other than fixed-format character strings. Genetic Programming 
(GP) is a generalization of genetic algorithms devised by Koza [Koza, 1992]. Genetic Programming is a method to 
evolve computer programs. Genetic Programming, one of a number of evolutionary algorithms, follows Darwin’s 
theory of evolution often paraphrased as “survival of the fittest”. There is a population of computer programs 
(individuals) that reproduce with each other. Over time, the best individuals will survive and eventually evolve to do 
well in the given environment [9]. 

 
Almost every real-world problem involves simultaneous optimization of several incommensurable and often 

competing objectives. While in single-objective optimization the optimal solution is usually clearly defined, this 
does not hold for multi objective optimization problems. Instead of a single optimum, there is rather a set of 
alternative trade-offs, generally known as Pareto-optimal solutions. These solutions are optimal in the wider sense 
that no other solutions in the search space are superior to them when all objectives are considered. Multi objective 
optimization problems (MOPs) are common. 
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2. Experimental Details 

2.1 Preparation of gelcasting Si3N4 ceramics 
 
Fig. 1 shows the detailed flowchart of the gelcasting process. 
 

 

Fig. 1. Flow chart of gelcasting process 

 During the gelcasting preparation of porous Si3N4 ceramics, in the first step, dispersant (Dolapix A88, 1 wt%, based 
on silicon nitride) and monomers (MAM and MBAM) were completely dissolved in distilled water by magnetic 
stirring, and the premix solution was served as a dispersing media for the ceramic powders. The next step was to add 
silicon nitride powder and suitable sintering additives (2 wt%, Al2O3; 1 wt%, Y2O3) into the premix solution, and the 
slurry was degassed for 15–20 min. After that APS and TEMED are added to the premix slurry which acts as 
initiator and the catalyst. The slurry was cast into a nonporous rectangular glass mold. The slurry was kept at 50–60 
0C for 30–40 minutes to polymerize to form gelled body after casting and then the gelled part was removed from the 
mold and dried to remove the solvent system. In order to avoid the occurrence of crack and warpage caused by rapid 
drying, the samples were dried in a commercial dryer at 25 0C of drying temperature and 98% of relative humidity. 
Finally, sintering was performed at a heating rate of 2 0C/min at 550 0C for binder burn out and heating rate 10 
0C/min and 1 hour holding time at 1700 0C under nitrogen atmosphere, and then porous Si3N4 ceramics were 
achieved. The 27 runs full factorial method is chosen since the method provides a wider covering region of 
parameter space and good consideration of variables interaction in the model. The ranges of manufacturing 
parameters used were in Table 1. 

     Table 1. Factors and levels 

S. No Factors Levels 
1 Solid loading (vol %) 30 40 50 
2 Ratio of monomer to cross linking agent 

(MAM:MBAM) 
3:1 6:1 9:1 

3 Monomers content (Wt %) 5 10 15 

 
The dispersant, TEMED and APS are kept constant. The materials and compositions are shown in Table 2. 
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Table 2. Materials kept constant 

S. No Material Quantity 
1 Al2O3(Aluminum Oxide) 2 wt% of solid loading 
2 Y2O3(Yttrium Oxide) 1 wt% of solid loading 
3 Dispersant 1 wt% of solid loading 
4 APS 0.8 wt% of monomers 
5 TEMED 0.5 wt% of monomers 

The measured values of flexural strength and porosity for 27 experiments conducted as per full factorial for training 
data set. The 27 ceramic samples are shown in the Fig 2.  

 
Fig. 2. Ceramic samples 

3. Modeling using GP 

Each individual in a genetic program is a computer program. However, this definition is a little vague since 
there is no general structure for all computer programs. Computer programs in GP are viewed as free-format trees, 
consisting of leaves (variables and constants) and non-terminal nodes (functions).The functions in the function set 
may include Arithmetic operations (+, -, *, etc.), Mathematical functions (such as sin, cos, exp, and log), Boolean 
operations (such as AND, OR, NOT), Conditional operators (such as If-Then-Else), Functions causing iteration 
(such as Do-Until). Crossover was categorized as the primary genetic operator for modifying program structures. 
Generally, after two programs (parents) are selected from the population, standard crossover randomly selects a 
node in each program tree except the root of the tree. It then exchanges the two sub trees rooted by the selected 
nodes (also called crossover points) between the two parent program trees to generate two new programs (off 
springs). Mutation was categorized as the secondary genetic operator for modifying program structures. For 
mutation, only one parent program is selected from the population. The new program is then inserted into the next 
population. Reproduction is where a selected individual copies itself into the new population. It is effectively the 
same as one individual surviving into the next generation. Execution of the previous mentioned three genetic 
operators constitutes one generation and the procedure is repeated until a termination criterion is met. The single 
individual with the best value of fitness over all the generations is designated as the result of a run. The termination 
criterion can be either a fixed number of generations or specified quality of the solution.  
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3.1. Description of NSGA-II 

NSGA-II follows the same steps as classical GAs. First, it initializes a random population of N individuals, then it 
produces children/offspring by recombination and mutation, evaluates the individuals, and finally selects the fittest 
ones. Several aspects of NSGA-II are however very specific to this algorithm: 

• The parental population is chosen through a tournament selection. This selection process enables to select a 
parent based on both convergence and spreading, while maintaining a reasonable diversity amongst the 
population. 

• The genetic operators used inside NSGA-II are generally (although not necessarily) the Simulated Binary 
Crossover and the Polynomial mutation. These operators use a stochastic approach to determine children 
genes, based on the genes of their parents. They are extremely efficient when real variables are used. 

• The selection process is computed at each generation on an intermediate population combining both parents 
and offspring. Therefore, no valuable solution can be lost, which makes NSGA-II elitist. 

• For the selection, NSGA-II uses a non-dominated-and-crowding sorting and selection [10-12]. 
 

4. Results and Discussion 

4.1 . Implementation of GP 

The training data set for implementation of GP constitutes Table 3. GP, being a stochastic search technique, 
makes no prior assumptions about the actual model form. The structure and complexity of the model evolve 
automatically. The terminal set T and the function set F were defined as: T= {x1, x2, x3} and F= {+, -, *, /}. The 
genetic programming run is controlled by many parameters of which the two major numerical parameters are the 
population size and the maximum number of evolutionary generations. Evolutionary algorithms are generally robust 
to variations of control parameters and some guidelines are provided (Koza 1992) for choosing the control 
parameters of standard GP. The control parameters for GP are given in the Table 4. 

Table 3. Training data set 

S. No Solid loading (vol 
%)(x1) 

Ratio of monomers  
 (x2) 

Monomer content 
(wt%)(x3) 

Flexural strength 
(MPa) 

Porosity (%) 

1 30 3:1 5 116.93 43.01 
2 30 3:1 10 110.07 44.03 
3 30 3:1 15 102.03 46.5 
4 30 6:1 5 110.69 45.7 
5 30 6:1 10 98.69 48.1 
6 30 6:1 15 85.03 51.76 
7 30 9:1 5 108.98 46.0 
8 30 9:1 10 88.229 51.01 
9 30 9:1 15 68.64 53.0 
10 40 3:1 5 190.76 33.36 
11 40 3:1 10 182.21 35.08 
12 40 3:1 15 173.32 38.04 
13 40 6:1 5 180.46 36.1 
14 40 6:1 10 180.9 36.7 
15 40 6:1 15 149.81 39.2 
16 40 9:1 5 175.32 37.4 
17 40 9:1 10 157.88 40.7 
18 40 9:1 15 120.73 42.23 
19 50 3:1 5 290.50 25.01 
20 50 3:1 10 285.52 26.5 
21 50 3:1 15 273.05 27.0 
22 50 6:1 5 270.9 27.3 
23 50 6:1 10 260.3 28.0 
24 50 6:1 15 250.26 29.7 
25 50 9:1 5 250.51 30.5 
26 50 9:1 10 248.23 31.1 
27 50 9:1 15 229.07 32.5 
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Table 4.  GP Control Parameters 

Terminal set {x1, x2, x3} 
Functional set {+, -, *, / } 
Population size 500 
Number of generations 100 
Crossover probability (%) 85 
Mutation Probability (%) 10 
Elitism Probability (%) 05 
Selection method Tournament selection 
Fitness measure Minimum Error(10-4) 

By investigation of various alternative models, the following expressions for flexural strength and porosity were 
found to have the best fitness value. 

GP model for flexural strength (FS) (MPa) ܵܨ ൌ ଵݔ3.428 ൅ ଶݔ13.49 ൅ ଷݔ6.856 െ ଶݔଵݔ0.4056 െ ଷݔଵݔ	0.2432 െ ଷݔଶݔ0.6585 െ ଷଶݔଵݔ0.002587 ൅0.002587ݔଵଶݔଷ ൅ ଵଶݔ0.08001 ൅ ଷଶݔ0.003187 െ ଷଶݔଶݔଵݔ0.0003491 ൅ ଷݔଶݔଵଶݔ0.0003491 െ 66.14  (1) 
GP model for porosity (P) (%) ܲ ൌ ଶݔ4.42 െ ଵݔ0.5689 ൅ ଷݔ0.6357 ൅ ଶଶݔଵଶݔ0.0001208 െ ଶݔଵݔ0.09356 െ ଷݔଵݔ0.01269 ൅ ଷݔଶݔ0.07347 െ0.0001208ݔଵଶݔଶ െ ଶଶݔ0.1871 െ ଷݔଶଶݔଵݔ0.0001208 ൅ ଷݔଶݔଵݔ0.0001208 ൅ 53.33   (2) 
 

 

Fig.3. Predicted vs Actual values of flexural strength 

 

Fig.4. Predicted vs Actual values of porosity 
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A comparison of the predicted models and the experimental values for the validation datasets of flexural strength 
and porosity are shown in Fig. 3 and Fig. 4 respectively. GP predicts the response high values of correlation 
coefficient (R2) for flexural strength and porosity are obtained and found to be 0.9945 and 0.9893 respectively. 
These indicate that the developed models satisfactorily represent the outputs. 

4.2 Effect of manufacturing parameters on the responses 

Surface plots have been drawn using MINITAB for the convenience of understanding the surface effects and 
selecting the best combinations of manufacturing parameters. The Flexural strength and porosity variation for 
different combinations of manufacturing parameters are shown in Fig. 5 and Fig. 6. 

4.3 Flexural strength 

Fig. 5 (a) shows the dependence of flexural on ratio of monomers (x2) and monomer content (x3) when the solid 
loading (x1) is kept constant at 40 vol%. It can be seen that even though both factors have influence on the flexural 
strength ratio of monomers is a more dominant factor. The combination of low value of ratio of monomers and 
monomer content provide the highest flexural strength. The influence of solid loading (x1) and monomer content 
(x3) for the constant ratio of monomers (x2) of 6:1 is shown in Fig. 5 (b). Both the factors show similar intensity of 
influence on flexural strength. The flexural strength increases if solid loading increases. Monomer content has the 
opposite effect, that is, flexural strength decreases if monomer content increases. Fig. 5 (c) shows how the flexural 
strength depends on the solid loading (x1) and ratio of monomers (x2) in the case when the monomer content (x3) of 
10 wt% is kept constant. 
 

 
 (a)                                                                                           (b)         

 
(c) 

Fig.5. Surface plots of effect of solid loading, ratio of monomers and monomer content on flexural strength 
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4.4 Porosity 

Fig 6 (a) shows the dependence of porosity on ratio of monomers (x2) and monomer content (x3) when the 
solid loading (x1) is kept constant at 40 vol%. It can be seen that even though both factors have influence on the 
porosity ratio of monomers is a more dominant factor. The combination of low value of ratio of monomers and 
monomer content provide the lowest porosity. The influence of solid loading (x1) and monomer content (x3) for the 
constant ratio of monomers (x2) of 6:1 is shown in Fig. 6 (b). Both the factors show similar intensity of influence on 
porosity. The Porosity decreases if solid loading increases. Monomer content has the opposite effect, that is, porosity 
decreases if monomer content decreases. Fig. 6 (c) shows how the porosity depends on the solid loading (x1) and 
ratio of monomers (x2) in the case when the monomer content (x3) of10 wt% is kept constant. 

4.5 Formulation of multi objective optimization 

The two objective functions considered in this study are 
1) Maximization of flexural strength, 2) Minimization of porosity, which are given in the equations (1) and (2) 
respectively.  
Subject to 20 ൑ ଵݔ ൑ 60, 2 ൑ ଶݔ ൑ 20, 2 ൑ ଷݔ ൑ 20                    (3) 
Tournament selection, binary crossover and polynomial mutation operators were selected as the genetic operators of 
the real-coded NSGA-II algorithm. The control parameters required for implementation of the algorithm are listed in 
table 5. The algorithm found the Pareto optimal front of conflicting objective functions with good diversity of 
solutions, as shown in Fig. 7. The optimal input variables and their corresponding objective function values are 
presented in table 6. 

 

 
(a) (b)      

 

 
(c) 

Fig. 6. Surface plots of effect of solid loading, ratio of monomers and monomer content on porosity 
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Table 5. NSGA-II control parameters 

Population size 50 
Number of generations 200 
Crossover probability (%) 0.9 
Mutation probability (%) 0.1 
Selection method Tournament 

 

From the experimental results of Table 3, manufacturing parameters listed in the first experiment lead to the flexural 
strength of 116.93 MPa and porosity of 43.01%. After optimization, flexural strength is increased to 130.1447 MPa 
at the same value of porosity in Table 6, fifth experiment. Similarly, manufacturing parameters listed in the fifth 
experiment (Table 3) lead to the flexural strength of 98.69 MPa and porosity of 48.1%. After optimization, porosity 
decreased to 43.390% at the same value of flexural strength in Table 6, 40th experiment. 

 

Fig. 7. Pareto optimal front 

Table 6. Final optimal solutions 

S. No Solid loading (vol 
%)(x1) 

Ratio of monomers  
 (x2) 

Monomer content 
(wt%)(x3) 

Flexural strength 
(MPa) 

Porosity (%) 

1 28.0000 2.0013 5.1152 0.0023 45.2326 
2 60.0000 2.0000 2.0000 350.6114 40.8083 
3 49.0000 2.0000 2.1702 199.2284 42.2517 
4 28.0000 2.0000 2.0107 0.8020 44.8718 
5 43.0000 2.0032 2.0113 130.1447 43.0117 
6 47.0000 2.0100 2.1683 175.4547 42.5221 
7 54.0000 2.0020 2.0738 261.0168 41.6270 
8 58.0000 2.0021 2.0000 327.9407 41.0078 
9 55.0000 2.0029 2.0000 274.0924 41.4967 
10 51.0000 2.0022 2.0748 221.5842 42.0147 
11 57.0000 2.0022 2.0000 312.0033 41.1489 
12 52.0000 2.0020 2.0685 237.8938 41.8507 
13 29.0000 2.0000 2.0050 9.8120 44.7112 
14 48.0000 2.0000 2.0596 187.0310 42.3689 
15 49.0000 2.0000 2.0631 206.8899 42.1602 
16 28.0000 2.0012 4.9623 0.2792 45.2106 
17 37.0000 2.0001 2.0223 72.4983 43.7476 
18 40.0000 2.0013 2.0002 106.8646 43.2933 
19 36.0000 2.0001 2.0000 64.9480 43.8507 
20 46.0000 2.0000 2.1312 167.7087 42.5872 
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21 44.0000 2.0034 2.0005 141.5503 42.8760 
22 39.0000 2.0001 2.0000 92.1967 43.4800 
23 42.0000 2.0032 2.0606 118.5579 43.1575 
24 42.0000 2.0032 2.0606 118.5579 43.1575 
25 60.0000 2.0000 2.0000 344.0260 40.8647 
26 60.0000 2.0000 2.0000 350.6114 40.8083 
27 32.0000 2.0002 2.0043 35.4060 44.2902 
28 56.0000 2.0028 2.0000 290.9973 41.3400 
29 59.0000 2.0000 2.0191 337.4603 40.9235 
30 57.0000 2.0020 2.0000 301.6934 41.2412 
31 55.0000 2.0029 2.0000 282.4895 41.4185 
32 34.0000 2.0000 2.0000 48.4847 44.0898 
33 56.0000 2.0020 2.0000 294.4617 41.3069 
34 32.0000 2.0002 2.0042 30.0628 44.3746 
35 52.0000 2.0021 2.0667 242.9669 41.8008 
36 44.0000 2.0033 2.0007 150.3087 42.7745 
37 30.0000 2.0000 2.0060 19.3570 44.5489 
38 53.0000 2.0021 2.0694 254.5149 41.6889 
39 59.0000 2.0020 2.0003 332.1472 40.9708 
40 40.0000 2.0013 2.0002 99.2608 43.3903 
41 35.0000 2.0001 2.0000 59.8832 43.9229 
42 33.0000 2.0010 2.0030 42.2167 44.1862 
43 53.0000 2.0020 2.0693 248.8620 41.7436 
44 35.0000 2.0001 2.0000 57.6175 43.9557 
45 48.0000 2.0000 2.0642 194.9796 42.2849 
46 55.0000 2.0028 2.0000 280.0529 41.4410 
47 30.0000 2.0002 2.0146 13.6108 44.6471 
48 50.0000 2.0023 2.0740 214.5512 42.0862 
49 40.0000 2.0012 2.0010 104.2811 43.3261 
50 57.0000 2.0022 2.0000 306.0409 41.2023 

 

Conclusions 

Si3N4 ceramic samples were prepared by gelcasting method with varying solid loading, ratio of monomers and 
monomer content at 3 levels using full factorial experimentation. Flexural strength and porosity of gelcast ceramic 
composite were measured. It results shows that flexural strength increases as solid loading increases and decreases 
as ratio of monomers and monomer content increases, porosity decreases as solid loading increases and increases as 
ratio of monomer to cross linking agent and monomer content increases. The process is modelled with genetic 
programming is a domain independent methodology which does not assume any prior functional form of the 
solution and hence it can accurately model the complex relationships of the process. The high R2 (for flexural 
strength is 0.99453 and porosity is 0.98934) value of the models proves the effectiveness of the GP approach to 
establish substantially valid models. Non-dominated sorting genetic algorithms-II has been used to simultaneously 
optimize the conflicting objectives of flexural strength and porosity. The Pareto optimal front and solution set is 
generated and presented. 
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