Diyush Theorem \#2
Statement: In an AP Series Δ Triangle, if distance of median pointto perpendicular pointand sum of other two sides is divisible by 10 , then triangle is a Right Angle Triangle.

What we have: Sides are in AP Series $(a-d, a, a+d)$
Let's prove it:

$$
\begin{gathered}
\text { Distance } C D=(A B+A E) / 10 \\
10 . C D=(a-d)+a \\
5 . C D+5 \cdot C D=2 a-d \\
5(B D-B C)+5(C E-D E)=2 a-d \\
5 B D-5 B C+5 C E-5 D E=2 a-d \\
5 C E-5 B C=2 a-d-(B D=D E) \\
5(C E-B C)=2 a-d \\
N o w, \\
C E^{\wedge} 2=A E^{\wedge} 2-A C^{\wedge} 2 \\
B C^{\wedge} 2=A B^{\wedge} 2-A C^{\wedge} 2 \\
C E^{\wedge} 2-B C^{\wedge} 2=A E^{\wedge} 2-A B^{\wedge} 2 \\
(C E+B C)(C E-B C)=(A E+A B)(A E-A B)
\end{gathered}
$$

$$
\begin{gathered}
(a+d)(C E-B C)=(a+a-d)(a-a+d) \\
(a+d)(C E-B C)=(2 a-d) d \\
C E-B C=(2 a-d) d /((a+d)) \\
\text { put value from eqn. } 1 \\
5(2 a-d) d /(a+d)=(2 a-d) \\
5 d /(a+d)=1 \\
5 d=a+d \\
5 d-d=a \\
a=4 d
\end{gathered}
$$

If it is a Right Angle Triangle,

$$
\begin{gathered}
(a+d)^{\wedge} 2=a^{\wedge} 2+(a-d)^{\wedge} 2 \\
(a+d)^{\wedge} 2-(a-d) \wedge 2=a^{\wedge} 2 \\
(a+d+a-d)(a+d-a+d)=a^{\wedge} 2 \\
(2 a)(2 d)=a^{\wedge} 2 \\
a=4 d Q E D .
\end{gathered}
$$

Digush Theorem \#3

Statement: In a Right-angled Triangle, if distance between middle point and perpendicular pointand sum of other two sides is divisible by 10 , then sides will be in A.P. Series.

Let'sproveit:

$$
\begin{array}{cc}
Z^{\wedge} 2=X^{\wedge} 2+Y^{\wedge} 2 \\
X^{\wedge} 2=A C^{\wedge} 2+B C^{\wedge} 2 & X^{\wedge} 2=A C^{\wedge} 2+(Z / 2-X+Y / 10) \\
Y^{\wedge} 2=A C^{\wedge} 2+C E^{\wedge} 2 & Y^{\wedge} 2=A C^{\wedge} 2+(Z / 2+X+Y / 10)
\end{array}
$$

$$
X^{\wedge} 2-Y^{\wedge} 2=A C^{\wedge} 2-A C^{\wedge} 2+(Z / 2-X+Y / 10+Z / 2-X+Y / 10)(Z / 2-X+Y / 10-Z / 2-X+Y / 10)
$$

$$
(X+Y)(X-Y)=(Z)(-X+Y / 5)
$$

$$
(X-Y)=(-Z / 5)
$$

$$
Z=5 Y-5 X \text {...Put this value into } Z^{\wedge} 2=X^{\wedge} 2+Y^{\wedge} 2
$$

$$
\begin{aligned}
& \quad(5 Y-5 X)^{\wedge} 2=X^{\wedge} 2+Y^{\wedge} 2 \\
& 25 Y^{\wedge} 2+25 X^{\wedge} 2-50 X Y=X^{\wedge} 2+y^{\wedge} 2 \\
& 24 X^{\wedge} 2-50 X Y+24 Y^{\wedge} 2=0 \\
& 24 X^{\wedge} 2-32 X Y-18 X Y+24 Y^{\wedge} 2=0 \\
& \text { © Geometry (Euclidean/Algebraic) }
\end{aligned}
$$

$$
\begin{gathered}
8 X(3 X-4 Y)-6 Y(3 X-4 Y)=0 \\
(3 X-4 y)(8 X-6 Y)=0 \\
2(3 X-4 Y)(4 X-3 Y)=0 \\
(3 X-4 Y)(4 X-3 Y)=0 \\
3 X-4 Y=0 \quad 3 X=4 Y \quad 3 / 4=Y / X \text { or } X=4 Y / 3 \text { or } Y=3 X / 4 \\
4 X-3 Y=0 \quad 4 X=3 Y \quad 4 / 3=Y / X \text { or } X=3 Y / 4 \text { OR } Y=4 X / 3
\end{gathered}
$$

$$
4 X-3 Y=0
$$

Put value of Y in eqn. 5Y-5X=Z

$$
\begin{gathered}
5 * 4 X / 3-5 X=Z \\
20 X-15 X=3 Z \\
5 X=3 Z \\
X / Z=3 / 5 \\
Y / X=4 / 3
\end{gathered}
$$

So $X=3 ; Y=4 ; Z=5$ that is an $A P$ Series.

