A New Theorem introduced by Piyush Goel with Four Proof

Piyush Goel

Mathematics for Piyush is a Passion from his childhood he was so passionate about Mathematics used to play
with Numbersdraw figures and try to get sides distance one day I draw a AP SERIES Right Angle Triangle(thinking that the distance between the point of intersection of median \& altitude at the base must be sum of rest sides that was in My Mind).
And at last Piyush Succeed. This new Theorem proved with Four Proof(Trigonometry/Co-ordinates Geometry/Acute Theorem/Obtuse Theorem).
Here are the Proofs:

This Theorem applies in Two Conditions:

1. The Triangle must be Right-Angled.
2. Its Sides are in A.P. Series.
3. Proof with Trigonometry
4. Proof with Obtuse Triangle Theorem
5. Proof with Acute Triangle Theorem
6. Proof with Co-ordinates Geometry

Four Proof (TRIGONOMETRY/CO-ORDINATES/OBTUSE TRIANGLE/ACUTE TRIANGLE) (By PIYUSH GOEL)

Theorem: In a Right-Angled Triangle with sides in A.P

Theorem: In a Right-Angled Triangle with sides in A.P. Series, the distance between the point of intersection of median \& altitude at the base is $1 / 10 \mathrm{Th}$ the sum of other two sides.

This Theorem applies in Two Conditions:

1. The Triangle must be Right-Angled.
2. Its Sides are in A.P. Series.

1. Proof with Trigonometry

$\tan \alpha=A D / D C$
AD= $\mathrm{DC} \tan \alpha--------------1$
$\tan \alpha=A D / D E$
AD= DE $\tan 2 \alpha$

DC $\tan \alpha=D E \tan 2 \alpha$
(DE+EC) $\tan \alpha=D E \tan 2 \alpha$
DE $\tan \alpha+E C \tan \alpha=D E \tan 2 \alpha$
$D E \tan \alpha+E C \tan \alpha=2 D E \tan \alpha /\left(1-\tan ^{\wedge} 2 \alpha\right)$
DE $\tan \alpha-$ DE $\tan ^{\wedge} 3 \alpha+E C \tan \alpha-E C \tan ^{\wedge} 3 \alpha=2 D E \tan \alpha$
EC $\tan \alpha-E C \tan ^{\wedge} 3 \alpha-\mathbf{D E} \tan ^{\wedge} 3 \alpha=2$ DE $\tan \alpha-\mathbf{D E} \tan \alpha$
$\tan \alpha\left(E C-E C \tan ^{\wedge} 2 \alpha-D E \tan { }^{\wedge} 2 \alpha\right)=D E \tan \alpha$
DE $\tan ^{\wedge} 2 \alpha-\mathbf{D E}=\mathbf{E C} \tan ^{\wedge} 2 \alpha-\mathbf{E C}$
$-D E\left(\tan ^{\wedge} 2 \alpha+1\right)=-E C\left(1-\tan ^{\wedge} 2 \alpha\right)$
DE $\left(\sin ^{\wedge} 2 \alpha / \cos ^{\wedge} 2 \alpha+1\right)=E C\left(1-\sin ^{\wedge} 2 \alpha / \cos ^{\wedge} 2 \alpha\right)$
DE $\left(\sin ^{\wedge} 2 \alpha+\cos ^{\wedge} 2 \alpha / \cos ^{\wedge} 2 \alpha\right)=$ EC $\left(\cos ^{\wedge} 2 \alpha-\sin ^{\wedge} 2 \alpha / \cos ^{\wedge} 2 \alpha\right)$
DE $\left(\sin ^{\wedge} 2 \alpha+\cos ^{\wedge} 2 \alpha\right)=E C\left(\cos ^{\wedge} 2 \alpha-\sin ^{\wedge} 2 \alpha\right)$
$\mathrm{DE}\left(\sin ^{\wedge} 2 \alpha+\cos ^{\wedge} 2 \alpha\right)=\mathrm{EC}\left(\cos ^{\wedge} 2 \alpha-\sin ^{\wedge} 2 \alpha\right) \ldots . . .$. where $\left(\sin ^{\wedge} 2 \alpha+\cos ^{\wedge} 2 \alpha=1\right) \&\left(\cos ^{\wedge} 2 \alpha-\sin ^{\wedge} 2 \alpha=\cos 2 \alpha\right)$
$\mathrm{DE}=\mathrm{EC} \cos 2 \alpha$
$\cos \alpha=a / a+d \quad \& \sin \alpha=(a-d) /(a+d)$
$\cos ^{\wedge} 2 \alpha=a^{2} /(a+b)^{2}$
$\sin ^{\wedge} 2 \alpha=(a-d)^{2} /(a+d)^{2}$
$\mathrm{DE}=\mathrm{EC}\left(\cos ^{\wedge} 2 \alpha-\sin ^{\wedge} 2 \alpha\right)$
$=E C\left(a^{2} /(a+b)^{2}-(a-d)^{2} /(a+d)^{2}\right.$
$=E C\left(a^{2}-(a-d)^{2} /(a+d)^{2}\right.$
$=E C(a-a+d)(a+a-d) /(a+d)^{2}$
$=E C(d)(2 a-d) /(a+d)^{2}$
$=(a+d) / 2(d)(2 a-d) /(a+d)^{2}$ \qquad where EC= $(a+d) / 2$
$=(d)(2 a-d) / 2(a+d)$
$=(d)(8 d-d) / 2(4 d+d)$ \qquad
$=7 d^{2} / 2(5 d)$
$=7 \mathrm{~d} / 10$
$=(3 \mathrm{~d}+4 \mathrm{~d}) / 10=(A B+A C) / 10$
2. Proof with Obtuse Triangle Theorem

$A C^{2}=E C^{2}+A E^{2}+2 C E . D E \quad$ where $E C=(a+d) / 2, A E=(a+d) / 2$
$a^{2}=(a+d / 2)^{2}+(a+d / 2)^{2}+2(a+d) / 2 D E$
$=(a+d / 2)(a+d+2 D E)$
$=(a+d / 2)(a+d+2 D E)$ where $a=4 d$
$16 d^{2}=(5 d / 2)(5 d+2 D E)$
$32 \mathrm{~d} / 5=5 \mathrm{~d}+2 \mathrm{DE}$
32d/5-5d=2DE
$32 \mathrm{~d}-25 \mathrm{~d} / 5=2 \mathrm{DE}$
DE =7 d/10
$=(3 \mathrm{~d}+4 \mathrm{~d}) / 10=(A B+A C) / 10$
3. Proof with Acute Triangle Theorem

$A B^{2}=A C^{2}+B C^{2}-2 B C . D C$
$(a-d) 2=a^{2}+(a+d)^{2}-2(a+d)(D E+E C) \quad$ where $A B=(a-d), A C=a, B C=(a+d) \& E C=(a+d) / 2$
$(a-d)^{2}-(a+d)^{2}=a^{2}-2(a+d)(D E+E C)$
$(a-d-a-d)(a-d+a+d)=a^{2}-2(a+d)(2 D E+a+d) / 2$
$2(-2 d)(2 a)=2 a^{2}-2(a+d)(2 D E+a+d)$
$-8 a d^{-} 2 a^{2}=-2(a+d)(2 D E+a+d)$
$-2 a(4 d+a)=-2(a+d)(2 D E+a+d)$
$a(4 d+a)=(a+d)(2 D E+a+d)$
$4 \mathrm{~d}(4 \mathrm{~d}+4 \mathrm{~d})=(4 \mathrm{~d}+\mathrm{d})(2 \mathrm{DE}+4 \mathrm{~d}+\mathrm{d})$
$4 \mathrm{~d}\left(8 \mathrm{~d}^{\prime}=(5 \mathrm{~d})(2 \mathrm{DE}+5 \mathrm{~d})\right.$
$32 d^{2} / 5 d=(2 D E+5 d)$
$32 \mathrm{~d} / 5=(2 \mathrm{DE}+5 \mathrm{~d})$
$32 \mathrm{~d} / 5-5 \mathrm{~d}=2 \mathrm{DE}$
$(32 \mathrm{~d}-25 \mathrm{~d}) / 5=2 \mathrm{DE}$
$D E=7 d / 10$
$=(3 \mathrm{~d}+4 \mathrm{~d}) / 10=(A B+A C) / 10$
4. Proof with Co-ordinates Geometry

In Triangle A B C,point A,B\&C,s co-ordinates are respectively (0,0) ,(a,0)\&(0,b).
Point D is middle point ,co-ordinates of Point Dis (a/2,b/2)
Equation of $B E$ is \qquad (Two Points equation)
$\mathrm{Y}-\mathrm{Y} 1=\left(\mathrm{X}-\mathrm{X}_{1}\right)(\mathrm{Y} 2-\mathrm{Y} 1) /\left(\mathrm{X} 2-\mathrm{X}_{1}\right)$
$Y-0=b-0 / 0-a(X-a)$
$Y=-b / a(X)+b$
$M_{1}=-b / a$
For perpendicular

```
\(\mathrm{M}_{1} \mathrm{M}_{\mathbf{2}}=-1\)
\(M_{2}=-1 / M_{1}\)
So \(\mathrm{M}_{\mathbf{2}}=\mathrm{a} / \mathrm{b}\)
Equation of AC
\(Y-0=a / b(X-0)\)
\(Y=a / b(X)\)
Put \(Y\) value in equation (1)
\(a / b(X)+b / a(X)=b\)
\(x\left(a^{2}+b^{2} / a b\right)=b\)
\(X=a b^{2} /\left(a^{2}+b^{2}\right)\)
To get Value of \(Y\), put \(X\) value in equation (2)
\(Y=a / b\left(a b^{2} /\left(a^{2}+b^{2}\right)\right.\)
\(Y=a^{2} b /\left(a^{2}+b^{2}\right)\) is midpoint.
As per the A.P Series ( \(\mathbf{z - d , z , z + d )}\)
Hers \(a=\mathbf{z - d}, \mathrm{b}=\mathrm{z}, \mathrm{c}=\mathrm{z}+\mathrm{d}\)
\((z+d)^{2}=(z-d)^{2}+z^{2}\)
\((z+d)^{2}-(z-d)^{2}=z^{2}\)
\((z+d+z-d)(z+d-z+d)=z^{2}\)
\((2 z)(2 d)=z^{2}\)
\(4 z d=z^{2}\)
\(4 d^{=} z\)
Put value of \(a \& b\)
\(a b^{2} /\left(a^{2}+b^{2}\right), a^{2} b /\left(a^{2}+b^{2}\right) \&(a / 2, b / 2)\)
\(a b^{2} /\left(a^{2}+b^{2}\right)=48 d / 25\)
\(a^{2} b /\left(a^{2}+b^{2}\right)=36 d / 25\)
a/ 2=3 d/2
b/ \(2=4 \mathrm{~d} / 2\)
\(C D^{2}=(48 d / 25-3 d / 2)^{2}-(36 d / 25-4 d / 2)^{2}\)
\(=(96 \mathrm{~d}-75 \mathrm{~d} / 50)^{2}+(72 \mathrm{~d}-100 \mathrm{~d} / 50)^{2}\)
\(=(21 \mathrm{~d} / 50)^{2}+(-28 \mathrm{~d} / 50)^{2}\)
\(=\left(441 \mathrm{~d}^{2} / \mathbf{2 5 0 0}\right)+\left(784 \mathrm{~d}^{2} / 2500\right)\)
\(=\left(1225 \mathrm{~d}^{2} / 2500\right)\)
\(C D=35 d / 50=7 d / 10\)
\(=7 \mathrm{~d} / 10=(3 \mathrm{~d}+4 \mathrm{~d}) / 10=(A B+A E) / 10\)
```

Here we got co-ordinates of Point $C-a b^{2} /\left(a^{2}+b^{2}\right), a^{2} b /\left(a^{2}+b^{2}\right)$ and co-ordinates of point D is $(a / 2, b / 2)$ because d

Copyrighted to PiyushGoel

