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ARTICLE INFO ABSTRACT

Keywords: Quinoline based fluorescent probes were formulated for the precise detection of cerium ions. Probes 1 and 2
Fluorescence detect Ce* ion as opposed to other metal ions through fluorescence in HEPES buffered CH3CN-H,0 (1:1, (v/v)
ICT HEPES =50mM, pH = 7.4) solution. The Ce®* ion recognition process follows the m to m* transitions and
Qm‘mli'?e intramolecular charge transfer (ICT) mechanisms. The LOD (Limit Of Detection) of probes 1 and 2 for sensing
Ef;é?sc;i)er:nical Ce>* ion were found to be 1.60 X 10~° M and 0.17 x 10~° M, respectively. These probes are further utilized to

Bio-imaging
logical applications.

detect Ce*™ ion by electrochemical studies. The practical applications of the probes are tested for varied bio-

1. Introduction

Cerium is a significant element in the lanthanum group and the
most abundant of them. Also, most widely distributed among the “rare
earths”, averaging 22mgkg ™' in the earth crust and found as ceric
bastnaesite, monazite and silicate rocks [1]. Cerium is widely used in
the production of ductile iron, cast iron, aluminum alloys and some
stainless steels [2]. Cerium is indispensable for utility in industries such
as metallurgy, glass and ceramics, lighting and television, and catalytic
converters in vehicles [3]. However, cerium is hazardous in work en-
vironment as element fumes on inhalation can lead to lung embolisms,
through prolonged exposure. Cerium is detrimental to liver tissue on
accumulation in the body [4]. Due to its varied application in industry
and society, there is growing interest in analyzing environmental,
medical and biological effects of cerium. Therefore, the availability of
precise methods for cerium determination is of importance. Ce** ion
detection relies on varying instrumental methods, including spectro-
photometry [5], X-ray fluorescence [6], inductively coupled plasma
(ICP) [7-9], potentiometric sensors based on ion-selective electrodes
[10-14], and spectrofluorometry [15-17]. Though these methods pro-
vide favorable results, the procedure involved is cumbersome. Several
efforts have been undertaken to synthesize a precise sensor for Ce>* ion
[18-22]. Nevertheless, they suffer from narrow working pH range
[20,21], concentration range [19,21], and longer response time [19]. In
this regard, ongoing fluorescent studies are targeted towards the
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development of a precise sensor system for selective detection of cerium
ions with high sensitivity [23-25]. A fluoroionophore system showing
high selectivity for Ce>* ion in semi-aqueous solution associated with
fluorescent changes are important implications can be used as specific
chemosensors. As well as, reports on electrochemical detection of Ce®*
ion is apparently rare. Reports are obtainable for Ce®** ion determina-
tion constructed on adsorptive stripping voltammetry and cyclic vol-
tammetry techniques [26]. Electrochemical sensors for Ce3* ion esti-
mation in drinking water and sea water are reported [27]. Here, we
report that the two symmetrical dimeric quinolone isomers 1 and 2 are
used as fluorescent as well as electrochemical sensors for Ce** ion,
which is free from the interferences of other metal ions. Therefore, to
the better of our understanding this is the first report on two symme-
trical dimeric quinoline isomers 1 and 2, which are modulated by the
linkers showed almost the same selectivity towards Ce®* ion with a
large blue shift irrespective of their position monitored by fluorescence
studies. These electrochemical fluorescent probes 1 and 2 exhibit affi-
nity for the sensing of Ce®* ion observed through distinct fluorescence
changes denoted by blue shift responses due to Intramolecular Charge
Transfer (ICT) process in CH3CN-H,O (1:1 v/v, HEPES =50mM,
pH = 7.4) solutions.
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(a) a,a’-dibromo-m-xylene, CH3CN, K>COs3, reflux, 16 h. (b) a,a’-dibromo-p-xylene, CH3CN,

K2COs, reflux, 16 h.

Scheme 1. Synthesis of probes 1 and 2.

(a) a,a’-dibromo-m-xylene, CH3CN, K,CO3, reflux, 16 h. (b) a,a’-dibromo-p-xylene, CH3CN, K,CO3, reflux, 16 h.
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Fig. 1. Fluorescence spectral changes of the probes a) 1 and b) 2 (4 uM) with
significant metal ions (100 equiv.) were added in CH3CN-H,O (1:1 (v/v),
HEPES =50 mM, pH = 7.4) solution. (Aex = 308 nm).

2. Experimental section
2.1. Materials and instruments

All procured solvents are HPLC grade quality. a,a’-Dibromo-m-xy-
lene, a,o’-Dibromo-p-xylene and 8-Hydroxyquinoline and were sourced
from Sigma Aldrich. Boetius Microheating Table and Mettler-FP5
Melting apparatus were used to measure the melting points. 'H and '°C
NMR spectra were noted on a Bruker 400 and 100 MHz spectrometer,
respectively, in CDCl; solution with TMS as an internal standard.
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Fig. 2. Competition analysis of the probes a) 1 and b) 2 in CH3CN-H»O (1:1 (v/
v), HEPES =50 mM, pH = 7.4) solution. The purple bars denote fluorescence
emission of probes 1 and 2 and 100 equiv. of other metal ions. The sky blue bars
denote variation fluorescence that occur upon addition of 100 equiv. of other
significant metal ions to the solution containing probes 1 and 2 and Ce** ion
(100 equiv.). The error bars represent the standard deviation of three mea-
surements.

LC-MS was determined by utilizing infusion methods. Absorption
spectra was examined using a Jasco UV-630 spectrophotometer.
Fluorescence measurement was recorded utilizing a Jasco FP-8200
spectrofluorometer equipped with quartz cuvettes of 1 cm path length.
The excitation and emission slit widths were 2.5 nm. All absorption and
emission spectra were recorded at 24 = 1 °C. Stock solutions for
analysis were prepared (2 x 10~ M for probes 1 and 2 (CH3CN/H,0,
1:1 (v/v), HEPES =50 mM, pH = 7.4) immediately before the experi-
ments. The solutions of metal ions were prepared from the nitrate salts
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Fig. 3. Variance in fluorescence intensity of the probes a) 1 and b) 2 (4 uM) on
rising concentration of ce®* ion (0-100 equiv.) in CH3CN-H,O (1:1 (v/v),
HEPES =50 mM, pH = 7.4) solution. (Aexy = 308 nm).

of Pb?*, cu®*, cd**, Hg*", La®*, Zn®**, Co®*, Ni**, Ca®*, Mn?*,
Cr®*, Ba2*, Bi®*, Ce3*, Mg?*, AP*, Fe2*t, Fe®*, Ag™®, 72", Th**,
Li*, Sr?", Na®” and K*.

2.2. Synthesis

2.2.1. 8-(3-((quinolin-8-yloxy)methyDbenzyloxy)quinoline (1)

Probe 1 was prepared by dissolving a,o’-dibromo-m-xylene (0.50 g,
1.90 mmol) and 8-hydroxyquinoline (0.60 g, 4.18 mmol) in acetonitrile
(50mL) in the presence of potassium carbonate and refluxed for 16 h.
After the reaction completed, monitored by TLC, the formed precipitate
was filtered and washed with more ice cold acetonitrile. The crude
product was further purified by column chromatography afforded as 1.
Yield = 85%. m.p. 273-276 °C. 'H NMR (400MHz, CDCl;) &:
8.83-8.85 (d, J =6 Hz, 2H), 7.97-8.00 (d, J =9 Hz, 2H), 7.56 (s, 1 H),
7.06-7.38 (m, 9 H), 6.87-6.90 (m, 2H), 5.31 (s, 4H) ppm. '*C NMR
(100 MHz, CDCl3): § 153.86, 148.73, 139.88, 137.16, 136.21, 129.43,
128.87, 126.69, 125.92, 121.57, 119.76, 109.90, 77.33, 57.69 ppm.
Elemental analysis: CygH,oN2O,: Calc.; C, 80.75; H, 4.84; N, 6.73%,
Found; C, 80.70; H, 4.75; N, 6.68%. LC-MS Calcd. for CysHooN2O5:
[M™*] 392, found [M+H]* 393.

2.2.2. 8-(4-((quinolin-8-yloxy)methyl)benzyloxy)quinoline (2)

Probe 2 was prepared similar to probe 1, except a,a’-dibromo-p-
xylene is used instead of a,a’-dibromo-m-xylene. Yield = 82%. m.p.
275-279 °C. 'H NMR (300 MHz, CDCl,) 8: 8.95-8.96 (d, J =3 Hz, 2 H),

Journal of Photochemistry & Photobiology A: Chemistry 386 (2020) 112103

a
) 664 4
|
L) |
B 9621 .
';) I
= |
£ 660 ' .
= |
53 |
< 1
: |
8 658 . 1
[ 7] |
2 |
e
= 656 :
= I
|
]
654 1
|
] T T T T
0.0 0.2 04 06 0.8 1.0
[GI/HHG]
) 654

652

650

648

646

Fluorescence Intensity

644

T L T i T i T . T

00 o2 04 08 08 10
[GI/HIHG]

Fig. 4. Job’s plot of the probes a) 1 and b) 2 with Ce®* ion in CH3CN-H,0 (1:1
(v/v), HEPES =50 mM, pH = 7.4) solution. (A.x = 308 nm).

8.09-8.12 (d, J =9 Hz, 2H), 7.33-7.51 (m, 10 H), 7.00-7.03 (m, 2 H),
5.42 (s, 4H) ppm. '*C NMR (101 MHz, CDCl;) §: 154.26, 149.37,
140.44, 136.61, 135.95, 129.51, 127.49, 126.61, 121.62, 119.90,
109.92, 77.08, 70.51 ppm. Elemental analysis: CpcH2oN2O5: Calc.; C,
79.57; H, 5.14; N, 7.14%, Found; C, 79.53; H, 5.12; N, 7.11%. LC-MS
Caled. for CogHoN505: [M '] 392, found [M+H]* 393.

2.2.3. Electrochemical studies

The electrochemical properties of the probes were evaluated using
cyclic voltammetry (CV) with CH3CN as a solvent (BioLogic SP-150
Potentiostats, France), Tetrabutyl ammonium perchlorate (TBAP),
Glassy carbon (GC) working electrode, convectional three-electrode cell
at room temperature. For the electrochemical studies, GC and Pt were
used as working and reference electrodes respectively, where Ag/AgCl
served as reference electrode. The supporting electrolyte TBAP was
melted and dried under vacuum for one hour. Probes 1 and 2 were
measured at 2 x 107> M concentration with 0.1 M of supporting
electrolyte. These solutions were degassed by bubbling nitrogen before
experiments. The cyclic voltammetry was performed in the potential
range of +0.5 to -2.5V (vs SCE) in which the applied potential was
ramped between -2.5V and +0.5V (vs SCE) for oxidation of quinoline
molecules and subsequently, the applied potential was ramped between
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Fig. 5. Benesi-Hildebrand plot of the probes a) 1:Ce3* (1:2) and b) 2:Ce3*
(1:2) complexes binding stoichiometry (A.x. = 308 nm). Error bars represent
standard deviations from three-times repeated experiments.

+0.5V and -2.5V (vs SCE) for the reduction of quinoline molecules.

2.2.4. Antibacterial and antifungal activity

Assay of antibacterial activity by means of disc diffusion method
using nutrient agar medium against two pathogenic bacteria
Staphylococcus aureus and Escherichia coli were performed. Kanamycin
and Chloramphenicol were used as controls in a sterile disc of whatman
No.3 grade. An equal amount of the samples added on the discs with at
most care and placed on an agar surface and incubated at 37 °C for 24 h.
Inhibition zone was measured and recorded. Similarly, the assay of
antifungal activity was performed by means of well diffusion method
against Aspergillus flavus on the potato dextrose agar (PDA) medium.
The samples were added on the well against the pathogenic fungi and
incubated at 25 °C for 2 days. After a sufficient incubation period, the
inhibition zone was measured and recorded.

3. Results and discussion
3.1. Synthesis of probes 1 and 2

The dimeric quinoline based probes 1 and 2 were prepared by uti-
lizing condensation reaction involving two positional isomers of
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dibromoxylene and 8-hydroxyquinoline in acetonitrile solution at re-
flux condition for 16 h (Scheme 1). The molecular symmetry of the
probes was analyzed utilizing NMR and Mass Spectroscopy (Fig. S1-S3).

3.2. Evaluation of selectivity

Fluorescence spectroscopic technique was used to evaluate the se-
lectivity and sensitivity of probes 1 and 2 with respect to specific ions of
environmental significance, such as Pb®*, Cu®*, Cd*>*, Hg?", La®*,
Zn2+, C02+, Ni2+, Ca2+, Mn2+, Cr3+, Ba“, Bi3+, Ce3+, Mg2+, A13+,
Fe?*, Fe**, Ag*, Zr**, Th**, Li*, Sr?", Na* and K™. Before starting
the fluorescence measurements, the UV-vis absorption spectra of
probes 1 and 2 in CH3CN-H,O (1:1 (v/v), HEPES =50 mM, pH = 7.4)
at different concentrations were measured and the excitation wave-
length was fixed at Aoy = 308 nm (Fig. S4). The metal ion sensing
analysis was carried out by adding a specified concentration of various
metal salts in CH3CN-H,O (1:1 (v/v), HEPES =50mM, pH = 7.4) to a
fixed concentration of probes 1 and 2 in the same solvents. In a typical
experiment, addition of Ce®** ion to the probes 1 and 2 induces a
dramatic enhancement in the fluorescence spectra upon excitation at
308 nm. It is worthwhile to note that, there is a significant hypso-
chromic shift from 405nm to 360 nm during the course of the fluor-
escence enhancement, which reveals that there is an ICT process in-
volved after the cerium ion coordination with the probes 1 and 2
(Fig. 1). As a result, probes 1 and 2 exhibit a selective Ce>* ion affinity
as compare to potentially significant metal ions through fluorescence
responses with a possible ICT mechanism even though being symme-
trical, the probes differ in the position of their linker.

3.3. Effect of pH and time response

Fluorescence responses of probes 1 and 2 with Ce®>" ions at varying
pH range are vital to assess the photophysical properties of probes 1
and 2. The sensitive detection of Ce>* ion using probes 1 and 2, over a
different pH range in CH3CN/H50 (1:1 (v/v)) solution was therefore
performed. The results indicate that there is no change in the fluores-
cence intensity among probes 1 and 2 over a wide pH range. However,
peak emissions in 1+Ce®>* and 2+ Ce®** were observed between 7-9
and 6-8 pH ranges, respectively (Fig. S5). These results demonstrated
that probes 1 and 2 bind with Ce®** ion over the pH range with in-
creased fluorescence intensity. Therefore, based on the above, an op-
timal pH of 7.4 is applied throughout the experiments for both the
probes 1 and 2. At the same time, changes in fluorescence intensities of
probes 1 and 2 against time were also performed (Fig. S6). The fluor-
escence intensities of probes 1 and 2 peaked within 2 and 3 min, re-
spectively. The peak intensities were stabilized for further 50 min upon
the addition of Ce®** ions to probes 1 and 2. These results highlight the
fact that probes 1 and 2 favorably detects Ce>* ion within a short span
of time hold promising applications in environmental and biological
media.

3.4. Binding stoichiometric studies

The precision sensing behavior of probes 1 and 2 for detecting Ce>*
ion was analyzed by utilizing other metal ions of biological and en-
vironmental significance (Fig. 2). To check the efficacy of probes 1 and
2 for the detection of Ce®™ ion (100 equiv.), similar concentration of
(100 equiv.) competing the metal ions namely Pb**, Cu®*, cd®*,
Hg?*, La*, Zn2*, Co?*, Ni2*, Ca*, Mn2*, Cr**, Ba®*, Bi®*, Mg?*,
AP, Fe**, Fe3*, Ag™, zr®*, Th**, Li*, Sr**, Na* and K* were
added to those probes. These results indicated that no significant var-
iance in a precision detection property of the probes in the presence of
competing metal ions.

The variance in fluorescence intensity of probes 1 and 2 was mon-
itored by on steadily raising the concentration of Ce** ions as shown in
Fig. 3. Upon increasing the concentrations of Ce>" ion to probes 1 and
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Fig. 6. Variance in fluorescence spectra of a) (i) probe 1 and b) (i) probe 2 (4 x 10~® M) in CH3CN-H,0 (1:1 (v/v), (HEPES =50 mM, pH = 7.4) in the presence of
Ce®" ion and EDTA (100 equiv.). a) (ii) and b) (ii) in number of cycles used for the recognition of Probes 1 and 2/Ce3*.

2, the fluorescence intensity gradually increased with an interesting
and prominent blue shift from 405 to 360 nm. The fluorescence in-
tensity peaked after the addition of 100 equiv. of Ce** ion. Im-
portantly, the titration profile reveals that the probes 1 and 2 interact
with Ce” ion in 1:2 binding stoichiometry, respectively. As a result,
maximum mole fraction was observed at 0.7 and 0.7, which indicates
1:2 and 1:2 (H:G) binding stoichiometry between probes 1 and 2 with
Ce®* complex (Fig. 4). The 1-Ce®* (1:2) and 2-Ce®** (1:2) complexes
binding stoichiometry were further corroborated by the LC-Mass spec-
tral analysis, there is a peak at m/z 1043 shown in supporting in-
formation as direct evidence of the complex formation (Fig. S7).
Moreover, the molecular ion peak at m/z 1043, which corresponds to
the [1 + (Ce(NOs3);] complex were depicted in the mass spectrum.
Based on fluorescence titration profiles, the binding stoichiometric ratio
of 1-Ce®* (1:2) and 2-Ce®** (1:2) complexes were analyzed utilizing the
Benesi-Hildebrand equations (Fig. 5) [28-32]. Therefore, probes 1 and
2 possess the binding constant values as K, = 9.23 x 107 M~ 2 and
K, = 9.44 x 10" M~ 2, respectively. The limit of detection (LOD) ranges
[33-35] of Ce*™ ion marginally varied for probes 1 and 2, which were
determined as 1.60 x 10~° M and 0.17 x 10~ ° M, respectively. These
values were determined using the equation 35/S, where § denotes the
standard deviation of the free probe, and S denotes the slope of the
linear regression plot obtained in the titration spectral data.

3.5. Reversibility of probes 1 and 2

The recycling ability of probes 1 and 2 to the detection of Ce** ion
is critical requirements. This study examined the reversibility of
binding between 1-Ce®** and 2-Ce®** in the presence of EDTA (100
equiv.) in CH3CN-H,O (1:1 (v/v), HEPES =50 mM, pH = 7.4) solution.
The combining of EDTA (100 equiv.) to the solutions containing probes
1 and 2 with Ce®* ion resulted in the elimination of fluorescence sig-
nals of 1-Ce®**and 2-Ce®**, and attainment of original intensity of free
probes 1 and 2. These results indicate the reversibility in Chelation
process as depicted in Fig. 6a (i) and 6b (i) for probes 1 and 2. This

reversibility of probes 1 and 2 was verified through repeated experi-
ments and results indicated that probes can be utilized in more than 10
instances for the detection of Ce** ion (Fig. 6a (ii) and 6b (ii)).

3.6. Proposed binding mode of the complex

The binding mechanism of the probes was examined by utilizing the
variations observed in fluorescence, as depicted in Scheme 2. Probes 1
and 2 exhibited a weak fluorescence, which is due to n to ;t* transitions
appeared by hetero atoms. Upon addition of Ce*" ions to probes 1 and
2, the fluorescence enhancement was observed with considerable blue
shift, which is due to an internal Intramolecular Charge Transfer (ICT)
process between two quinoline rings. Possibly, the two hetero atoms ‘N’
and ‘O’ of the two quinoline rings are engaged on the complexation
with Ce3*, which leads to the hindrance of n to x* transitions and = to
st* transitions are allowed. Hence, the dangling quinoline rings attached
to the xylylene ring through a freely rotatable oxygen atom, eventually
become rigid. Therefore, the feasible coordination modes of 1-Ce®** and
2-Ce®* complexes based on the data obtained from Job’s plot, non-
linear curve fitting (Benesi-Hildebrand) methods and mass spectra re-
sults in a 1:2 (Host: Guest) binding stoichiometry.

3.7. IR spectral analysis

The IR spectral analysis of probe 1 and 1-Ce>* complex were re-
corded. As depicted in (Fig. S8a), the IR spectra of probe 1 displayed
specific bands that appeared at 1382cm™ and 1632 cm™ relating to
C—O0 and C=N groups on the quinoline moiety, respectively [36]. Upon
addition of Ce>* ion to probe 1, there is a significant shift in its ab-
sorption bands from 1382cm™ and 1632cm™ to 1373 cm™ and
1627 cm™, due to slump in the electron density of the quinoline rings.
These band shifts can be attributed to the alignment of Ce** ion with
the C—0O and C=N groups of probe 1. Similarly, the IR spectral analysis
of probe 2 displayed specific absorption bands at 1374cm™ and
1625 cm™! relating to C—O and C=N groups on the quinoline moiety,
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Scheme 2. Possible binding mode of the probes 1 and 2 with Ce(NO3)s.

p 5 10 15 2
Full Scale 2068 cts Cursor: 0.000 keV)
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Fig. 7. Scanning Electron Micrograph of a) i) Probe 1 only ii) 1+ Ce®" and b) i) Probe 2 only ii) 2+ Ce®* and EDAX analysis of a) iii) 1+ Ce®™ and b) iii) 2+ Ce3 "
complex.
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Fig. 8. Cyclic voltammogram obtained on a) and b) both probes 1 and 2 (2 X 10™° M) with Ce(NO3); (100 equiv) 0.1 M of TBAP supporting electrolyte in

acetonitrile.

Table 1
A comparison between Fluorescence and Electrochemical detection mode.

Sample Limit Of Detection (LOD)

Fluorescence Detection Electrochemical Detection
1 with ce** 1.60 x 10° M 1.65 x 10°° M
2 with Ce** 0.17 x 107°M 0.19 x 107°M

respectively (Fig. $8b). Upon addition of Ce>* ion to probe 2, there is a
significant shift in its absorption bands from 1374 cm™ and 1625 cm™
to 1370 cm™ and 1623 cm™, respectively. These band shifts are pos-
sibly due to the coordination of Ce>* ion with the C—O and C=N
groups of probe 2.

3.8. Microscopic studies

The SEM images of probes 1, 2, 1+Ce®* and 2+ Ce>* revealed that
some noticeable changes in surface topography as displayed in Fig. 7.
SEM images of probes 1 and 2 possess a stone-like structure and
morphed to spherical-like structure on interaction with Ce®>* ion. This
can be attributed to the agglomeration of probes 1 and 2 with Ce®** ion.
The chemical composition of the probes 1+Ce®** and 2+Ce®* com-
plexes were measured by EDAX analysis (Fig. 7a (iii) and 7b (iii)) in-
dicates the presence of carbon (C), oxygen (O) and Cerium (Ce) ele-
ments in the probes 1+Ce®* and 2+ Ce®* complexes, respectively.

Table 2
Selected electrochemical properties of probes 1 and 2 upon addition of different
metal ions.

S. No Probe Epa (V)
1 1 -0.89
2 1 with Ce** -1.62
3 1 with AI** —-0.98
4 1 with Fe?* -0.93
5 1 with Ni?* -0.81
6 2 —-0.94
7 2 with Ce®* -1.51
8 2 with AP+ -0.95
9 2 with Fe?* -0.91
10 2 with Ni?* -0.88

3.9. Application studies

3.9.1. Electrochemical behavior of probes 1 and 2 with Ce>* ions

The electrochemical properties of probes 1 and 2 were examined in
CH3CN. For contrast purposes, the solutions were shielded, as were
their protonated derivatives that are vulnerable to light. A typical cyclic
voltammogram (CV) of probe 1 is depicted in Fig. 8. This validates si-
milarity in that the electrochemical characteristics of probes 1 and 2.
Consequently, the CV of free probes 1 and 2 and probes 1 and 2 con-
taining 100 equiv. of respective metal ions Ce®>*, AI>*, Fe*>* and Ni%™*
were measured. This electrochemical trend depicted in Fig. 8 been
observed for respective probes, where quinoline groups realigned with
regard to meta and para position. In oxidation, the initial peak corre-
sponds to a reversible and elaborate oxidation process of probes 1 and
2. This peak can be an outcome of oxidation of the quinoline moiety
[37-40] whose first oxidation potential is -0.89 and -0.94 V in probes 1
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Fig. 9. Cyclic voltammogram of a) and b) both probes 1 and 2 with other metal ions of AI**, Fe?>*, Ni** (100 equiv) 0.1 M of TBAP supporting electrolyte in

acetonitrile.
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Fig. 10. Laser confocal scanning microscopic images of (a) Bright field image of
E. coli cells, (b) Confocal image of E. coli cells, (c) Super imposed image of (a)
and (b), (d) Bright field image of E. coli cells stained using probe 1 (10 uM), (e)
Confocal image of E. coli cells stained to only probe 1 (10 pM), (f) Super im-
posed image of (d) and (e), (g) Bright field image of E. coli cells stained using
probe 2 (10 uM), (h) Confocal image of E. coli cells stained to only probe 2 (10
uM), (i) Super imposed image of (g) and (h), (j) Bright field image of E. coli cells
stained using Ce** ion (20 pM), (k) Confocal image of E. coli cells stained to
ce®* jon (20 uM), (1) Super imposed image of (j) and (k), (m) Bright field image
of E. coli cells stained to probe 1 (10 uM) and Ce3* ion (20 uM), (n) Confocal
image of E. coli cells stained using probe 1 (10 pM) and Ce®" ion (20 uM), (o)
Super imposed image of (m) and (n), (p) Bright field image of E. coli cells
stained to probe 2 (10 uM) and Ce®* ion (20 M), (q) Confocal image of E. coli
cells stained using probe 2 (10 uM) and Ce>* ion (20 uM), (r) Super imposed
image of (p) and (q), in CH3CN-HEPES (1:1, v/v) solution.

Table 3
Antimicrobial activity of probes 1 and 2 with Ce®** ions against Staphylococcus
aureus, Escherichia coli and Aspergillus flavus.

Sample Zone of Inhibition (mm)
Staphylococcus aureus Escherichia coli Aspergillus flavus
Control 27 mm 25mm -
1 - - 2mm
2 10mm - 10 mm
1 with Ce3* 26 mm 22 mm 15mm
2 with Ce** 13 mm 4mm 20 mm

- No growth beneath the disc.

and 2. Interestingly, on addition of Ce®** ion, the detection properties of
probes 1 and 2 were different and the LOD (Limit Of Detection) of
probes 1 and 2 for sensing Ce>* ion were found to be 1.65 x 10™° M
and 0.19 x107° M, respectively (Table 1). The anodic shift of
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oxidation potential of probe 1 moved from -0.89 V to -1.62 V and probe
2 moved from -0.94V to -1.51V, respectively. The above CV experi-
ments also performed to prove the probes 1 and 2 selectively towards
Ce®** ions (Fig. 8). Under similar circumstances, probes 1 and 2 on
addition of specific metal ions such as AI**, Fe*>*, and Ni*>* displayed
no significant variation in oxidation potential as depicted in Fig. 9. This
dip in oxidation potential can be a result of ICT between dimeric qui-
noline probes. All the above results revealed that the probes 1 and 2
have greater affinity for Ce** ion in contrast to other metal ions.
Considering these findings, the order of selectivity can be seen. i.e.
Ce®* > AI** > Fe?* > Ni*" (Table 2).

3.9.2. Biological applications

Further studies were conducted to determine the efficacy of probes
1 and 2 for the detection of Ce>" ion in biological media. Biological
imaging of Escherichia coli (E. coli) cells was carried out utilizing Laser
Confocal Scanning Microscope. To assess this practical application in
microbes the cell viability was assessed by MTT assay in vitro.
Accordingly, three independent triplicates were performed to de-
termine the sensitivity of the probes 1 and 2, and the medium without
the probes as the control. The percentage of cell inhibition was calcu-
lated using this formula. % of inhibition = [mean OD of untreated cells
(control) / mean OD of treated cells] X 100, and from this the corre-
sponding ICso (concentration that causes a 50% reduction of the cell
growth) value was calculated as 43.32 = 2.35uM (Fig. S9a) and
41.17 = 2.15uM (Fig. S9b). The E. coli strain DH5a was cultured in LB
media under incubation at 37 °C. Optical microscopy images validate
the viability of cells in imaging studies and establish the emission of
fluorescence in cultured cells. The cultured cells were exposed to Ce>™*
ion (20 uM) in 50 mM CH5;CN/ HEPES (1:1 v/v, pH = 7.4) solution for a
duration of 30 min at 25 °C [41]. The additional Ce®* ion remaining in
the cultured media was eliminated utilizing centrifugation. This
cleansing was repeated utilizing 10 mL of 50 mM CH3CN/HEPES (1:1 v/
v, pH = 7.4) solution until only trace level of Ce®>* ion was detected on
the E. coli cell surface. The treated E. coli cells were examined using
confocal laser scanning microscope (The CLSM cell imaging was taken
in Carl Zeiss 710 model German made, Zen 2011 software with F Set
458 nm. The excitation-emission wavelength ranges for cell imaging
approximately from 410 to 480 nm, here we used the laser at 458 nm).
Imaging studies revealed marginal emission of fluorescence among E.
coli cells exposed to probes 1 and 2. Furthermore, introduction of Ce>™*
ion to cultured cells exposed to probes 1 and 2, revealed high emission
of red fluorescence within the cells (Fig. 10n,0 and q,r). This effect can
be attributed to the in situ [1+ Ce®>* and 2+ Ce®*] complexes formed
within the cells. This outcome validates the efficacy of probes 1 and 2
for the detection of Ce®* ion in bacterial cells. Therefore, probes 1 and
2 are suitable for precision imaging of live-cell fluorescence imaging
agent in the presence of Ce** ion in E. coli cells and open up avenues for
Ce®* ion detection in varied biological cellular life forms.

3.9.3. Antimicrobial Activity of probes 1 and 2 with Ce** ions

The antibacterial activity of probes 1, 2 and 1-Ce®*, 2-Ce** com-
plexes were tested against microbial pathogens such as staphylococcus
aureus, Escherichia coli and controls were kanamycin and
Chloramphenicol. The pathogens were incubated on the Nutrient Agar
plates and antibiotic discs were used as control. Empty sterile discs
added with probes 1, 2 and 1-Ce>*, 2-Ce®** complexes (Fig. S10). After
24 h of incubation, the zone of inhibition was formed around the discs.
These results showed that 1-Ce>* complex showed maximum inhibition
and good antibacterial activity against Escherichia coli and staphylo-
coccus aureus organisms, whereas 2-Ce>* complex showed maximum
inhibition only to staphylococcus aureus (Table 3). The antifungal ac-
tivity of the probes 1, 2, 1-Ce** and 2-Ce®>* complexes were tested
against Aspergillus flavus (Fig. S10). As a result, 1-Ce®>* and 2-Ce>*
complexes showed maximum inhibition and good antifungal activity
against Aspergillus flavus organisms (Table 3).
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4. Conclusion

In conclusion, probes 1 and 2 exhibit high sensitivity to the detec-
tion of Ce®** ion as compared to other relevant metal ions monitored by
fluorescence studies. The affinity of probes 1 and 2 towards Ce®** ion
can be attributed to & to w* transitions leads to strong ICT process as-
sisted by hindrance of n to st* transitions. The binding proposition of
the 1-Ce®* and 2-Ce®" complexes have been found to be 1:2 based on
the job's plot, non-linear least square fitting methods, and MS analysis.
The detection limit of probes 1 and 2 towards Ce** are 1.60 X 10™° M
and 0.17 x 102 M, respectively. Probes 1 and 2 were further utilized
to detect cerium ions in live-cell imaging. In that, 1-Ce>* and 2-Ce®™*
complexes showed maximum inhibition, good antifungal and anti-
bacterial activity. Moreover, the quinoline-based probes 1 and 2 pave a
new pathway to be explored for the detection of various other biolo-
gical and environmental hazardous substances. Further works on its
derivatives and sensing of other potential molecules such as anions,
amino acids are currently underway in our laboratory.
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